
Domain Specific Languages
A path to high assurance solutions

Cryp to l : The Language o f C ryp tog raphy

CASE STUDY

DOMAIN SPECIFIC LANGUAGES

A domain-specific language (DSL) is a programming language targeted at producing solutions in a given
problem domain (as opposed to general-purpose programming languages). The idea is to empower
subject-matter experts by allowing them to design solutions in terms they are familiar with and at a level of
abstraction that makes most sense to them. Galois has been a leader designing DSLs for a variety of
domains, including cryptography, operating system security policy, communication routing policy, and more.

APPROACH
In addition, a good DSL opens the way for powerful tool support: simulations for design exploration, automatic testing and automatic
generation of test harnesses, generation of highly specialized code for multiple targets, and generation of formal evidence for
correctness, safety and security properties.

These kinds of tools are possible for general-purpose languages as well, but generality limits how far one can go. The fact that a DSL is
restricted to a particular problem domain allows for profound and often unexpectedly superior results, mainly because one can apply
the wealth of domain-specific heuristics and expert knowledge available for that domain directly in these tools.

BENEFITS

Formalizing system requirements in a DSL.
With a traditional approach, system level requirements are usually
expressed in natural language documents. A well-designed DSL
allows the domain expert to quickly prototype their system and
explore the design space through experiments and simulation. Once
the domain expert is satisfied with the design, the DSL program can
serve as a formal, high-level specification of the system
requirements while remaining fully executable.

The reference specification may also be used as documentation (to
help other domain experts and stakeholders understand and work
with the system design and as part of any certification
documentation) and as input to other useful tools.

Generating code for multiple targets.
 A DSL is a programming language, and most DSLs come with an
interpreter based “development environment” to directly execute
programs for experimentation purposes. Furthermore, as DSLs tend
to be smaller than general-purpose programming languages, it is
usually easier to add a new target back-ends, generating executables
that directly run on the target architectures. Indeed, DSLs may also
be used to describe heterogeneous systems and to generate code for
each of those different targets. For example, one might have a C
monitor coordinating the behavior of many FPGA-based
components. The DSL program would specify how to compile each
component and how the components communicate.

Often, just generating C, Java, VHDL, or native machine code is not
sufficient, as certification bodies (such as the FAA) have tight
restrictions on the kinds of language constructs allowed (e.g., no
pointer arithmetic, no general recursion). Again, as DSLs tend to be
small, it is much easier to generate code that fits within those
constraints, together with formal evidence that the generated code
is functionally equivalent to the original program.

Verification and validation.
Any system needs good testing. The same features that enable a
system designer to experiment with her designs via simulation
also enable the generation of comprehensive test harnesses,
specialized to the domain in question. Specific certification
requirements that impact testing can be encoded into the test
harness generator.

In addition, DSLs lend themselves well to the generation of
formal evidence of correctness and robustness. DSLs are smaller
and more focused than general-purpose languages, thereby
reducing the size of the search space significantly. In addition,
the capture of important formal evidence can be factored into the
design of the DSL itself, taking care to provide constructs that
support the domain expert while maintaining the tractability of
formal techniques.

© 2008 Galois, Inc. All rights reserved.

CASE STUDY

CRYPTOL: THE LANGUAGE OF CRYPTOGRAPHY

The Cryptol specification language was designed by Galois for the NSA as a public standard for specifying
cryptographic algorithms. Cryptol tool-set provides the necessary components for deploying cryptographic
modules across the entire software process, from specification and implementation to verification and
certification. Cryptol tools significantly reduce overall life-cycle costs by addressing the key cost drivers in
the deployment of crypto.

USING THE CRYPTOL TOOLS
The Cryptol development process begins with a reference specification for the cryptographic algorithm. A crypto developer refines the
technology-independent, parameter-neutral specification into an implementation that targets a specific technology and associated
parameter settings, resource constraints, and performance requirements.

Providing complete specifications.
Cryptol is a formal specification language tailored to the unique needs
of cryptography and cryptographic implementations. It is fully
executable, allowing designers to experiment with their programs
incrementally as their designs evolve.

Enabling re-use.
Cryptol provides a platform-neutral specification language that
generates or guides implementations on multiple platforms. The
Cryptol tools can generate C, C++, and Haskell software
implementations, VHDL and Verilog HDL hardware implementations,
or formal models for verification from the specification
.

Accelerating certification.
A Cryptol reference specification becomes the formal documentation
for the cryptographic module, eliminating the need for separate and
voluminous English descriptions. In addition, Cryptol verification tools
show functional equivalence between the specification and the
implementation at each stage of the toolchain.

Simplifying implementation.
Cryptol provides a refinement methodology to bridge the conceptual
gap between specification and low-level implementation, thereby
reducing time-to-market. For example, Cryptol allows engineers and
mathematicians to program cryptographic algorithms on FPGAs as if
they were writing software.

Cryptol
Reference

Specification

Symbolic
Evaulator

Evidence
Checker

Symbolic
Evaluator

Cryptol
Compiler

Cryptol IPCore
Generator

C

Simulation

VHDL

Bitfile
Netlist
Model

Place and
Route

Equivalence
Evidence

Equivalence
Evidence

Equivalence
Checker

Equivalence
Evidence

Equivalence
Checker

Reference
Model

Target
Model

Experiment with system
integration and control logic.

Calibrate time/space
trade-offs and connectivity
issues. Verify equivalence with
target specification.

Make high-level target-specific
refinements. Verify equivalence
with reference specification.

KeyGalois tools

Third party tools

Data files

Evaluation/Certification evidence

Input to tool

Feedback to designer

Netlist
Model

Synthesis

Target
Specificaton

© 2008 Galois, Inc. All rights reserved.

CRYPTOL IN ACTION
A team of developers from Rockwell Collins, Inc. and Galois, Inc. has successfully produced high-speed embedded Cryptographic
Equipment Applications (CEAs), automatically generated from high-level specifications. An algorithm core generated from a Cryptol
specification for AES-256 and running in Electronic Codebook mode demonstrated throughput in excess of 16 Gbps. The “crypto
waveform” logic uses the Model-Based Development language Simulink. These high-speed CEA implementations comprise a mixture
of software and VHDL and target a compact new embedded platform designed by Rockwell Collins. Notably, almost no traditional
low-level interface code was required to implement these high-performance CEAs. In addition, automated formal methods based tools
provided by Cryptol proved that algorithm implementations faithfully implement their high-level specifications.

When feedback from the output stage to the input was introduced, thereby defeating the advantage gained by “unrolling” AES rounds,
encryption performance for AES-256 still exceeded 1 Gbps while consuming less than 2% of the available programmable logic for the
algorithm core. Most importantly, the Rockwell Collins/Galois team was able to design, implement, simulate, integrate, analyze, and
test a complex CEA on the new hardware, including AES-256 and Galois Counter Mode (GCM), in less than 3 months.

CASE STUDY

SUMMARY
DSLs (domain specific languages) allow subject-matter experts
to design solutions in using familiar concepts and constructs.
Cryptol is an example of a DSL for expressing cryptographic
algorithms. A feature-rich tool set has been developed at Galois
and used with success at Rockwell Collins, Inc. The capabilities
include:

Create a reference specification and associated formal model.

“Test” the specification against published test vectors and
formal assertions about state.

Refine the specification stepwise to one or more
implementations, trading off space, time, and other
performance metrics. Because these explorations are done in
Cryptol, they can be done quickly.

Compile the implementation for multiple targets: C/C++,
Haskell, and VHDL/Verilog are currently supported.

Equivalence check an implementation against the reference
specification. VHDL implementations are converted into
bitfiles for FPGAs using third-party FPGA vendor tools;
verification tools can be utilized at several points in that
vendor tool-chain.

Equivalence check VHDL implementations not produced by
Cryptol against a reference specification.

Galois, Inc.
421 SW 6th Avenue | Suite 300 | Portland, Oregon 97204

T 503.626.6616 | F 503.350.0833

www.galois.com

© 2008 Galois, Inc. All rights reserved.

