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Abstract 
As cryptography becomes more vital to the infrastructure of computing systems, it becomes increasingly vital to be 
able to rapidly and correctly produce new implementations of cryptographic algorithms.  To address these 
challenges, we introduce a new, formal methods-based approach to the specification and implementation of 
cryptography, present a number of scenarios of use, an overview of the language, and present part of a 
specification of the Advanced Encryption Standard. 

 
Introduction 
Cryptographic components are increasingly being 
integrated into hardware and software systems to 
improve information assurance and security. Because of 
this, several serious challenges arise: test and 
verification of systems incorporating cryptography, 
unambiguous specification of cryptographic algorithms, 
and the rapid and safe retargeting of cryptographic 
implementations to new hardware and software 
platforms. 

Cryptol brings a new, formal methods-based approach 
to cryptography that addresses these challenges.  It is a 
high-level specification language for cryptography that 
was designed at Galois Connections in consultation with 
expert cryptographers from the National Security 
Agency.  In Cryptol, cryptographic concepts are 
expressed directly and formally and in a fashion that is 
independent of the details of a particular hardware 
platform. 

Cryptol provides significant benefits to: 

• Crypto developers targeting a variety of hardware 
and software platforms 

• High-assurance systems developers incorporating 
embedded cryptographic components 

• Cryptographers that explore new cryptographic 
approaches 

• Verification laboratories which use formal models to 
verify implementations 

• Customers of high-assurance systems responsible for 
validation and test. 

These benefits are a result of one’s ability to view a 
single Cryptol specification from a number of 
perspectives. First Cryptol can be seen as a language 
for Cryptography. Using high-level Cryptol to express 
the same concepts and idioms as those found in 
published algorithms, developers can quickly 
implement pre-existing algorithms or develop new 
ones. Developers are thereby freed to focus on the 
cryptography itself, not distracted by machine-level 
details such as word size.  In a complementary way, 
Cryptol can be seen as providing an authoritative 
reference for validation. To this end, Cryptol is 
positioned to become the standard language for 
cryptography.  A growing number of both public and 
non-public algorithms are under development.  
Standard Cryptol specifications can be used to validate 
new cryptographic implementations by generating test 
vectors of user-selectable intermediate values. Taking 
this line of thinking a bit further, Cryptol may also be 
viewed as a framework for verification. For embedded 
systems in particular, and for developers of high 
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assurance applications in general, Cryptol facilitates 
construction of formal models, providing for an 
increased level of confidence in the development. 
Lastly Cryptol provides an exciting platform for 
implementation generation. In this regard it should be 
stated that Cryptol specifications are inherently 
portable.  Retargeting the deployment platform does 
not involve recoding the algorithm. Cryptol is intended 
for use with various platforms, including embedded 
systems, smart cards, and FPGAs. 

Uses of Cryptol 
This section presents various scenarios of how Cryptol 
may be used to address the aforementioned, as well as 
other challenges in the area of cryptography. 

As a formal specification language, Cryptol can be the 
basis of a standard library of cryptographic 
specifications.  This is useful for current, and evolving 
standards, but is also very useful for design capture of 
legacy algorithms that are still deployed, and may need 
to be redeployed again for compatibility with pre-
existing installations.  In addition, for current and 
evolving standards, Cryptol can provide the basis for 
complete design capture of highly parameterized 
algorithms.  Many algorithms are parameterized on 
things like block size, key size, number of rounds, etc, 
but in practice are only specified for certain fixed 
standard sizes.  Cryptol was designed to be well suited 
to capturing the complete parameterized design. 

Another interesting area of application for Cryptol as a 
specification language is towards the specification of 
new modes.  The number of cryptographic algorithms in 
use is relatively stable, but the modes of use of them 
are still an evolving area.  Cryptol can be an excellent 
design tool for new modes, as well as provide the 
framework for libraries of modes. 

Libraries of Cryptol specifications are also useful for 
validating implementations of crypto algorithms.  Such 
libraries can be used as a golden reference for test 
vectors. Not only can it be used for arbitrary input-
output vectors, it can also be used to generate vectors 
for any sub-part of an algorithm.  The specification 

could be used as the basis for generation of large sets 
of random test vectors on-demand—for any part of the 
algorithm.  One scenario is to imagine hooking up 
crypto implementations to a Cryptol test harness, 
which would feed large sets of fixed and random test 
vectors to the implementation, instead of rely on 
testing just via a fixed small set of vectors. 

Taking this one step further, Cryptol could be used as a 
basis for machine assisted verification.  Due to the 
intentionally chaotic nature of cryptography (i.e. it 
intentionally spreads information over as wide an area 
as possible), it would be hopeless to apply techniques 
such as model checking in a naïve fashion, since the 
state space would rapidly blow up.  However, we can 
easily imagine applying such brute force verification 
techniques to subparts of an algorithm.  Fortunately, 
cryptographic algorithms are fairly stylized: there’s a 
brief initialization phase, a number of rounds, and a 
brief finalization phase.  We can easily apply brute 
force verification to the initialization and finalization.  
But we can also apply brute force model checking to 
verify the body of the round function without having to 
actually iterate it.  Then, for any given algorithm, we 
can use a stock argument based on induction and 
composition to combine the verification steps on the 
parts of the algorithm into a verification of the 
correctness of the entire algorithm. 

Cryptol is perhaps most useful as a platform for 
implementation generation.  The total number of 
cryptographic algorithms out in the world is relatively 
small, and will most likely continue to be so.  However, 
the total number of implementations of cryptographic 
algorithms is growing rapidly, and will continue to do 
so.  As the use of cryptography becomes more and 
more ubiquitous, the need to deploy it on more and 
more platforms will grow.  Many of the most interesting 
platforms for cryptography are on embedded processors 
and other specialized hardware that have a wide 
variety of requirements to satisfy, and thus require a 
wide variety of implementations. 

There are a number of ways that Cryptol can be used in 
implementation generation.  The most straightforward 
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is to use Cryptol to generate reference 
implementations in a variety of industrial languages, 
such as Java, or C# for software implementations, or 
VHDL for hardware.  The expectation is that the 
generated code would be designed for readability 
instead of efficiency.   

Another way is to use Cryptol to interface with existing 
implementations.  For example, you may have an 
existing efficient implementation of a block algorithm, 
and use Cryptol to generate the code for a new mode.  
In this case, the Cryptol generated code need not be 
highly optimized since it will be responsible for a tiny 
portion of the runtime. 

Another mode of use would be to use Cryptol to 
generate moderately efficient code, which is then hand 
optimized in the critical portions to attain the needed 
efficiency.  Alternately, you might link Cryptol-
generated code to a library of highly tuned core 
functions. 

But perhaps the biggest payoff in code generation from 
Cryptol specification is targeting directly to hardware.  
There are two main benefits that Cryptol provides 
here.  The first is that Cryptol specifications 
themselves are inherently platform independent.  They 
are not contingent on details such as word size of some 
underlying architecture, and thus can be easily mapped 
to the particular requirements of a target platform.  
The second is that Cryptol specifications avoid 
unnecessary sequentiality, thus they are well suited to 
taking advantage of the highly parallel nature of 
hardware.  

Current Practice in Cryptography 
Current practice in  cryptography is for algorithms to 
be specified in a published paper using a mixture of 
English text and pseudo code.  Associated with the 
paper specification is usually a reference 
implementation written in the C language.  
Unfortunately, neither English, pseudo code or C code 
are ideal as a basis for a specification. 

There are several problems with English and pseudo 
code specifications.  First, they are often incomplete 
and/or ambiguous, and since there’s no practical way 
to machine check them, there’s no easy way to 
determine whether the specification is complete and 
unambiguous.  This in itself makes such a specification 
inadequate as a basis for verification.  Further, a paper 
specification is not executable.  This makes validation 
based on it very problematic.  There’s usually only a 
handful of test vectors supplied—if more are needed, 
the only recourse is to attempt to calculate additional 
vectors by hand.  The pseudo code used is also typically 
a Pascal-like procedural language.  This has two 
problems.  First, a procedural specification will 
invariably obscure the underlying mathematics inherent 
in a cryptographic algorithm.  Second, a procedural 
specification will needlessly enforce a sequential order 
upon the algorithm.  This means that the specification 
will be inappropriate as a basis for implementation on a 
highly parallel platform. 

There are also a number of problems with using C as 
the specification language.  A C implementation is 
certainly executable, but unless extreme care is taken, 
it correctness depends upon what platform the 
implementation is executed on.  The C language is also 
far too low-level.  An implementation has to concern 
itself with various details about the platform on which 
it is executed, such as the word size of the platform.  
The code that implements 4-bit vectors will be 
radically different from the code that implements 48-
bit vectors, and is usually forced to be highly 
dependent on conditional compilation constructs or 
awkward preprocessor macros.  Further, a C 
implementation has to concern itself with memory 
allocation, memory organization and pointer 
manipulation details that are ripe sources of errors in C 
code. 

A Domain Specific Language for Cryptography 
Whenever you have a specialized particular application 
area, such as cryptography, there is usually a 
significant gap between the concepts fundamental to 
that application area, and the concepts available in a 
traditional programming language.  This gap causes a 
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tension whereby something is lost: usually either the 
clarity and expressiveness of programs or the efficiency 
of implementation.  This tension also forces those that 
implement applications in this area to be experts both 
in the application domain, as well as experts in 
programming.  Domain Specific Languages are 
languages tailored to the needs of a particular 
application area that bridge the gap between the 
application concepts and programming concepts.  A 
Domain Specific Language allows experts in the 
application domain to express their ideas directly 
without needing to become expert programmers. 

Cryptography is a fundamentally mathematical 
discipline with its own specialized idioms.  At the same 
time the implementation of cryptography must be 
absolutely correct and highly efficient in order to be 
practical and its use accepted.  This sort of intersection 
of specialized needs with demanding implementation 
requirements lends itself well to the use of a Domain 
Specific Language. 

Introduction to Cryptol 
Cryptol was designed to meet the challenges facing 
crypto implementation. As a language for 
cryptography, it was designed with feedback from 
expert cryptographers at the National Security Agency, 
and thus naturally speaks the language of 
cryptographers.  As a platform for validation and 
verification, it is a formal language, and thus is 
designed to be complete and unambiguous. As a 
platform for generation, Cryptol is a declarative 
language that is platform neutral. 

The Cryptol language was initially designed to target 
block symmetric cryptographic algorithms.  During the 
design phase, the five finalists for the Advanced 
Encryption Standard (MARS, Serpent, TwoFish, RC6, and 
Rijndael) were studied as good examples of state of the 
art cryptographic algorithms.  In addition, DES was 
studied as an example of current practice.  In studying 
these various algorithms, the idea was to identify what 
the algorithms had in common, as well as what 
differences occurred among them.  This process 
identifies the idioms and concepts of a domain, as well 

as the range of expression that is needed to capture 
designs. 

The data in cryptographic algorithms is typically 
vectors of bits of varying sizes, usually ranging from 4 
bits upwards to 128 bits, with 8 bit and 32 bit being 
common sizes.  Bit vectors are grouped together in 
various ways (such as a 2D matrix of bits) to form 
blocks, where a block is the unit of encryption, and in 
the Advanced Encryption Standard consists of 128 bits.  
To encrypt arbitrary amounts of data, a block algorithm 
is iterated over a stream of blocks. 

Another form of data in crypto algorithms is lookup 
tables, also known as “substitution boxes”, or S-Boxes 
for short.  These are relatively small tables, e.g. a 
table that maps 4-bit vectors to 8-bit vectors. 

Cryptol uses the simple uniform concept of a sequence 
to express how data is organized in a crypto algorithm.  
Bit vectors are sequences of bits, matrices, tables and 
blocks are sequences of sequences, and streams are 
just sequences of blocks. 

Literal sequences in Cryptol are written using brackets 
surrounding the elements, and spaces separating them.  
Sequences are indexed starting with zero, and are 
written left-to-right in increasing index order.  Bits are 
written using the constants True and False.  Thus, 
the following is a 7 element sequence of bits: 

[True False False True False True True] 

Numbers in Cryptol are represented by bit vectors, 
and, as is typical with crypto algorithms, explicitly use 
modulus arithmethic, with the modulus based on the 
size of the vector.  For example, an 8-bit vector would 
support arithmetic modulo 28.  Numeric literals can be 
written in the usual fashion, using the C convention for 
expressing literals in a base other than 10, i.e. 0x10 is 
a hexadecimal literal whose value is sixteen.  Numbers 
are encoded as sequences of bits using the little-endian 
convention.  Thus, the above sequence of bits may also 
be written: 

0x69 
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In addition to standard arithmetic, Cryptol also 
supports polynomial arithmetic, which occurs in some 
advanced cryptographic algorithms, such as AES and 
TwoFish.  Addition, multiplication, division, and 
modulus are all supported over polynomials.  
Polynomials are written in a fashion suggestive of the 
mathematical notation.  For example, the polynomial 
x7+x5+x+1 is written in Cryptol as: 

<| x^7 + x^5 + x + 1 |> 

Polynomials are represented as a sequence of the 
coefficients, with the coefficient for xn  being the nth 
element of the sequence.  Commonly, the coefficients 
are simply bits.  For example, the polynomial written 
above is represented as the sequence: 

[True True False False 
 False True False True] 

There is a rich set of operators for manipulating 
sequences, including basic ones like sequence 
concatenation (#), and sequence indexing (@). 

In addition to these various operators on sequences, 
sequence comprehensions allow element-wise 
specification of sequences.  A sequence comprehension 
has two parts: a defining expression, and a list of 
generating sequences.  The generating sequences 
provide elements and the defining expression says how 
to combine those elements into an element of the 
resulting sequence.  Here’s an example: 

[| 2*x + y || x <- xs || y <- ys |] 

The expression 2*x + y is the defining expression, 
and the generating sequences are specified by x <- 
xs and y <- ys, where xs and ys are the names of 
two sequences, and x and y represent single elements 
drawn from each sequence.  The sequence that results 
from this comprehension is defined as follows: the ith 
element of the result sequence is defined as the value 
of the expression 2*x + y, where x is equal to the ith 
element of xs, and y is equal to the ith element of ys.  
The length of the new sequence is the minimum of the 

lengths of the generating sequences.  For example, 
given the sequences: 

xs = [1 2 3] 
ys = [5 6 7 8] 

The resulting sequence is: 

[7 10 13] 

Control flow in cryptographic algorithms is typically 
quite straightforward as data-dependent control is 
avoided to prevent timing attacks.  Most control flow 
consists of simple iteration, and is written as for-loops 
in pseudo code specifications.  Unfortunately, for-loops 
encode sequentiality, even when that sequentiality is 
not inherent in the specification.  Cryptol takes a 
declarative approach: you specify a sequence of the 
intermediate values leading to a final value (in the 
style of a recurrence relation), instead of the 
sequentially imperative style of specifying the steps 
you would take to arrive at the final value.  The 
declarative approach has an added benefit: it 
automatically provides a handle on all the intermediate 
values.  This is invaluable when using Cryptol to 
generate test vectors. 

Recurrence relations are specified in Cryptol as 
recursive sequences.  For example, the following 
function sums up the elements of its argument 
sequence by specifying all the intermediate sums 
leading up to the final sum, and taking the last element 
of that sequence to get the result. 

sum xs = last ys 
  where 
    ys = [0] # 
         [| x + y || x <- xs || y <- ys 
|]; 

The final aspect of Cryptol that we need to touch on in 
this brief introduction is the use of types.  Types in 
Cryptol express the size and shape of data.  Consider 
the sequence 
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zs = [[0x7a 0x1b] [0x26 0x5c] [0xb4 
0x11]]; 

This is a sequence of 3 elements, each of which is a 
sequence of 2 elements, each of which is a sequence of 
8 bits.  We write this in Cryptol as: [3][2][8]Bit. 
The size of each sequence is given, wrapped in 
brackets, from outermost to innermost.  The innermost 
type defaults to Bit and can be elided for 
convenience. 

Cryptol is a strongly typed language: every expression 
and definition must have a valid type, and every value 
and function must be used in a manner that is 
consistent with its type. 

The user may also supply type annotations on 
definitions and expressions as a form of documentation 
that is checked by Cryptol for consistency.  Type 
annotations on definitions, also called type signatures, 
as written as a name, followed by a colon, and the type 
that that name is to adhere to.  For example, a valid 
type signature for zs defined above is: 

zs : [3][2][8]; 

AES in Cryptol 
In this section, we present portions of a specification of 
the Advanced Encryption Standard (AES) in Cryptol. 

The first thing to define is the basic parameters of the 
algorithm.  The Rijndael algorithm, upon which AES is 
defined, has three parameters: Nb, Nk, and Nr.  These 
three parameters specify the size (in bits) of the input 
block divided by 32, the size of the key divided by 32, 
and the number of rounds.  The division by 32 has to do 
with the fact that AES internally represents both the 
block and the key as two dimensional matrices of 
bytes, where the number of rows is fixed at four, and 
the number of columns is specified by Nb and Nk 
respectively (4*8=32).  The AES is defined as the 
instance where Nb is 4, Nk is either 4, 5, or 6, and Nr 
is defined as the largest of Nb and Nk plus 6. 

Nb = 4; 
Nk = 4; 
Nr = max(Nb, Nk) + 6; 

There’s one more preliminary step—defining some 
abbreviations that will be convenient later.  The first is 
an abbreviation for the type of the state, the two-
dimensional matrix of bytes that is the internal 
presentation of the block of data being 
encrypted/decrypted.  The second is an abbreviation 
for the type of the expanded key material. 

State = [4][Nb][8] 
Xkey = (State, [Nr-1]State, State) 

Xkey is a triple consisting of initial key material, the 
key material for the middle rounds, and the key 
material for the final round.  We can now write type 
signatures for the inferface to the algorithm: 

keySchedule : [4*Nk][8] -> Xkey 
encrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8] 
decrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8] 

The first signature says that keySchedule is a 
function that takes 4*Nk bytes, and returns the 
expanded key material (Xkey). The functions encrypt 
and decrypt take the expanded key, and 4*Nb bytes, 
and returns the same.  We now look at the top-level 
encryption function. 

encrypt (XK, PT) = 
  unstripe (Rounds (State, XK)) 
  where State = stripe PT; 

As you can see, local definitions can be introduced 
using where clauses.  The top-level call is basically a 
call to the Rounds function wrapped with calls to 
stripe and unstripe respectively.  The stripe and 
unstripe functions convert from and to the input, which 
is a flat sequence of bytes into the two-dimensional 
internal form of the state. 

stripe : [Nb*4][8] -> [4][Nb][8]; 
stripe block = transpose (split block); 
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unstripe : [4][Nb][8] -> [Nb*4][8]; 
unstripe state = join (transpose state); 

The split operator takes a sequence and splits it into a 
sequence of sequences—where the amount of elements 
(and the number of sub-elements in each) it splits the 
input into is guided by the type signature.  Then, 
because the input is mapped onto the state in column-
major fashion, the split sequence is transposed.  So, 
first the [Nb*4][8] sequence is split into a 
[Nb][4][8] sequence, then it is transposed into 
column-major format to a [4][Nb][8] sequence.  The 
unstripe function is reverse analogous—first 
transpose, the use join, to combine the two-
dimensional sequence of bytes end-to-end into a one-
dimensional sequence. 

The Rounds function specifies the round structure of 
the algorithm.  First, the initial key material is added 
into the initial state to make the starting point for the 
rounds iteration (rnd0).  Then, we define the sequence 
of round intermediate values using a recursive 
sequence definition (rnds).  Lastly, the final round is 
called on the last of the round intermediate values 
with the final key (the final round in AES is a variant of 
the previous rounds).  The body of the rounds iteration 
is simply a call to the Round function using the 
current state, and the round keys for that round. 

Rounds (State, 
        (initialKey, rndKeys, finalKey)) 
= 
  final 
  where { 
    rnd0 = AddRoundKey(State,initialKey); 
    rnds = [rnd0] # [| Round (state, key) 
                    || state <- rnds 
                    || key <- rndKeys |]; 
    final = 
      FinalRound (last rnds, finalKey); 
  }; 

The Round function is the heart of the algorithm.  It 
takes the current state, and a round key, and takes the 

state through four transformations, returning the final 
result. 

Round : (State, State) -> State; 
Round (State, RoundKey) = State4 
  where { 
    State1 = ByteSub State; 
    State2 = ShiftRow State1; 
    State3 = MixColumn State2; 
    State4 = 
      AddRoundKey (State3, RoundKey); 
  }; 

The BytesSub function is a State to State 
transforming function, as the type signature indicates.  
It is defined as a nested comprehension—for each row 
in the state, it produces a new row, where each 
element has had the sbox function applied to it.  The 
effect is simply an element-wise application of the 
sbox function to each byte of the state. 

ByteSub : State -> State; 
ByteSub state = 
  [| [| sbox x || x <- row |] 
  || row <- state |]; 

The ShiftRow function is also a State to State 
transforming function.  For each row of the state, that 
row is circularly shifted a certain number of positions 
to the left.  The amount of the shift depends on which 
row, so the comprehension has an additional generator: 
i<-[0 .. ] that generates an increasing index 
counter starting with 0.  This index is used in the call 
to the shift function, which calculates the actual 
amount of shift.  The <<< operator performs a circular 
shift of the top-level elements of its left-hand 
argument sequence. 

ShiftRow : State -> State; 
ShiftRow state = 
  [| row <<< shift (Nb, i) 
  || row <- state 
  || i <- [ 0 .. ] |]; 

shift : ([8], [4]) -> [4]; 
shift (nb, i) = j 
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  where j = if (i < 2) | (nb < 8) 
            then i else i + 1; 

The MixColumn function is again a State to State 
transformer.  It operates on the state in a column 
major fashion—hence the state is first transposed, then 
we perform the multCol operation (which we won’t 
look at here) on each column, and transpose the result. 

MixColumn : [4][Nb][8] -> [4][Nb][8]; 
MixColumn state = 
  transpose [| multCol (cx, col) 
            || col <- transpose state 
            |]; 

It’s worth noting that the above is a specification—not 
an imperative as to how to implement the 
specification.  If this code were compiled, an 
optimizing compiler has enough information to turn the 
transpose operations into an efficient re-indexing of 
the state, instead of a costly pair of transpose 
operations. 

The final round transformation adds the round key 
material to the state by bit-wise exclusive-or.  In 
Cryptol, this is easily expressed using the exclusive-or 
operator ^.  The exclusive-or operator, like all of the 
Boolean operators, applies to arbitrary types by 
extending bit-wise in the natural fashion. 

AddRoundKey : (State, State) -> State;  
AddRoundKey (State, Key) = State ^ Key; 

 

Status of Cryptol 
Galois Connections has currently implemented the 
Cryptol™ development tool.  It provides an interpreter 
for Cryptol, a tracing and debugging facility that is 
useful for generating test vectors and intermediate 
values for any named subpart of a specification.  It also 
provides a compiler that generates C code. 

Currently under development is support for automated 
verification using Binary Decision Diagrams (BDDs).  In 

addition, an optimized version of the C compiler is also 
underway. 

In the near future, we expect to begin work on a 
compiler to target Cryptol specifications straight down 
to FPGAs, which are reconfigurable hardware devices. 

Conclusion 
There are a number of challenges in implementing 
cryptography efficiently and correctly.  The highly 
specialized nature of cryptography, and the many 
requirements on implementations under a wide variety 
of architectures offers a ripe opportunity for a 
specialized language and tools.  Cryptol was designed 
to meet these needs.  We have presented a number of 
ways in which Cryptol may be used, given a flavor of 
what the language looks like, and shown what the 
current Advanced Encryption Standard looks like in 
Cryptol.  


