

© 2004 Galois Connections, Inc. All rights reserved.

CRYPTOL: High Assurance, Retargetable
Crypto Development and Validation

October 2003

Abstract
As cryptography becomes more vital to the infrastructure of computing systems, it becomes increasingly vital to be
able to rapidly and correctly produce new implementations of cryptographic algorithms. To address these
challenges, we introduce a new, formal methods-based approach to the specification and implementation of
cryptography, present a number of scenarios of use, an overview of the language, and present part of a
specification of the Advanced Encryption Standard.

Introduction
Cryptographic components are increasingly being
integrated into hardware and software systems to
improve information assurance and security. Because of
this, several serious challenges arise: test and
verification of systems incorporating cryptography,
unambiguous specification of cryptographic algorithms,
and the rapid and safe retargeting of cryptographic
implementations to new hardware and software
platforms.

Cryptol brings a new, formal methods-based approach
to cryptography that addresses these challenges. It is a
high-level specification language for cryptography that
was designed at Galois Connections in consultation with
expert cryptographers from the National Security
Agency. In Cryptol, cryptographic concepts are
expressed directly and formally and in a fashion that is
independent of the details of a particular hardware
platform.

Cryptol provides significant benefits to:

• Crypto developers targeting a variety of hardware
and software platforms

• High-assurance systems developers incorporating
embedded cryptographic components

• Cryptographers that explore new cryptographic
approaches

• Verification laboratories which use formal models to
verify implementations

• Customers of high-assurance systems responsible for
validation and test.

These benefits are a result of one’s ability to view a
single Cryptol specification from a number of
perspectives. First Cryptol can be seen as a language
for Cryptography. Using high-level Cryptol to express
the same concepts and idioms as those found in
published algorithms, developers can quickly
implement pre-existing algorithms or develop new
ones. Developers are thereby freed to focus on the
cryptography itself, not distracted by machine-level
details such as word size. In a complementary way,
Cryptol can be seen as providing an authoritative
reference for validation. To this end, Cryptol is
positioned to become the standard language for
cryptography. A growing number of both public and
non-public algorithms are under development.
Standard Cryptol specifications can be used to validate
new cryptographic implementations by generating test
vectors of user-selectable intermediate values. Taking
this line of thinking a bit further, Cryptol may also be
viewed as a framework for verification. For embedded
systems in particular, and for developers of high

Jeffrey R. Lewis
Galois Connections, Inc

Portland, Oregon

Brad Martin
National Security Agency

CRYPTOL: High Assurance, Retargetable

Crypto Development and Validation

Page 2 of 8 © 2004 Galois Connections, Inc. All rights reserved.

assurance applications in general, Cryptol facilitates
construction of formal models, providing for an
increased level of confidence in the development.
Lastly Cryptol provides an exciting platform for
implementation generation. In this regard it should be
stated that Cryptol specifications are inherently
portable. Retargeting the deployment platform does
not involve recoding the algorithm. Cryptol is intended
for use with various platforms, including embedded
systems, smart cards, and FPGAs.

Uses of Cryptol
This section presents various scenarios of how Cryptol
may be used to address the aforementioned, as well as
other challenges in the area of cryptography.

As a formal specification language, Cryptol can be the
basis of a standard library of cryptographic
specifications. This is useful for current, and evolving
standards, but is also very useful for design capture of
legacy algorithms that are still deployed, and may need
to be redeployed again for compatibility with pre-
existing installations. In addition, for current and
evolving standards, Cryptol can provide the basis for
complete design capture of highly parameterized
algorithms. Many algorithms are parameterized on
things like block size, key size, number of rounds, etc,
but in practice are only specified for certain fixed
standard sizes. Cryptol was designed to be well suited
to capturing the complete parameterized design.

Another interesting area of application for Cryptol as a
specification language is towards the specification of
new modes. The number of cryptographic algorithms in
use is relatively stable, but the modes of use of them
are still an evolving area. Cryptol can be an excellent
design tool for new modes, as well as provide the
framework for libraries of modes.

Libraries of Cryptol specifications are also useful for
validating implementations of crypto algorithms. Such
libraries can be used as a golden reference for test
vectors. Not only can it be used for arbitrary input-
output vectors, it can also be used to generate vectors
for any sub-part of an algorithm. The specification

could be used as the basis for generation of large sets
of random test vectors on-demand—for any part of the
algorithm. One scenario is to imagine hooking up
crypto implementations to a Cryptol test harness,
which would feed large sets of fixed and random test
vectors to the implementation, instead of rely on
testing just via a fixed small set of vectors.

Taking this one step further, Cryptol could be used as a
basis for machine assisted verification. Due to the
intentionally chaotic nature of cryptography (i.e. it
intentionally spreads information over as wide an area
as possible), it would be hopeless to apply techniques
such as model checking in a naïve fashion, since the
state space would rapidly blow up. However, we can
easily imagine applying such brute force verification
techniques to subparts of an algorithm. Fortunately,
cryptographic algorithms are fairly stylized: there’s a
brief initialization phase, a number of rounds, and a
brief finalization phase. We can easily apply brute
force verification to the initialization and finalization.
But we can also apply brute force model checking to
verify the body of the round function without having to
actually iterate it. Then, for any given algorithm, we
can use a stock argument based on induction and
composition to combine the verification steps on the
parts of the algorithm into a verification of the
correctness of the entire algorithm.

Cryptol is perhaps most useful as a platform for
implementation generation. The total number of
cryptographic algorithms out in the world is relatively
small, and will most likely continue to be so. However,
the total number of implementations of cryptographic
algorithms is growing rapidly, and will continue to do
so. As the use of cryptography becomes more and
more ubiquitous, the need to deploy it on more and
more platforms will grow. Many of the most interesting
platforms for cryptography are on embedded processors
and other specialized hardware that have a wide
variety of requirements to satisfy, and thus require a
wide variety of implementations.

There are a number of ways that Cryptol can be used in
implementation generation. The most straightforward

CRYPTOL: High Assurance, Retargetable

Crypto Development and Validation

Page 3 of 8 © 2004 Galois Connections, Inc. All rights reserved.

is to use Cryptol to generate reference
implementations in a variety of industrial languages,
such as Java, or C# for software implementations, or
VHDL for hardware. The expectation is that the
generated code would be designed for readability
instead of efficiency.

Another way is to use Cryptol to interface with existing
implementations. For example, you may have an
existing efficient implementation of a block algorithm,
and use Cryptol to generate the code for a new mode.
In this case, the Cryptol generated code need not be
highly optimized since it will be responsible for a tiny
portion of the runtime.

Another mode of use would be to use Cryptol to
generate moderately efficient code, which is then hand
optimized in the critical portions to attain the needed
efficiency. Alternately, you might link Cryptol-
generated code to a library of highly tuned core
functions.

But perhaps the biggest payoff in code generation from
Cryptol specification is targeting directly to hardware.
There are two main benefits that Cryptol provides
here. The first is that Cryptol specifications
themselves are inherently platform independent. They
are not contingent on details such as word size of some
underlying architecture, and thus can be easily mapped
to the particular requirements of a target platform.
The second is that Cryptol specifications avoid
unnecessary sequentiality, thus they are well suited to
taking advantage of the highly parallel nature of
hardware.

Current Practice in Cryptography
Current practice in cryptography is for algorithms to
be specified in a published paper using a mixture of
English text and pseudo code. Associated with the
paper specification is usually a reference
implementation written in the C language.
Unfortunately, neither English, pseudo code or C code
are ideal as a basis for a specification.

There are several problems with English and pseudo
code specifications. First, they are often incomplete
and/or ambiguous, and since there’s no practical way
to machine check them, there’s no easy way to
determine whether the specification is complete and
unambiguous. This in itself makes such a specification
inadequate as a basis for verification. Further, a paper
specification is not executable. This makes validation
based on it very problematic. There’s usually only a
handful of test vectors supplied—if more are needed,
the only recourse is to attempt to calculate additional
vectors by hand. The pseudo code used is also typically
a Pascal-like procedural language. This has two
problems. First, a procedural specification will
invariably obscure the underlying mathematics inherent
in a cryptographic algorithm. Second, a procedural
specification will needlessly enforce a sequential order
upon the algorithm. This means that the specification
will be inappropriate as a basis for implementation on a
highly parallel platform.

There are also a number of problems with using C as
the specification language. A C implementation is
certainly executable, but unless extreme care is taken,
it correctness depends upon what platform the
implementation is executed on. The C language is also
far too low-level. An implementation has to concern
itself with various details about the platform on which
it is executed, such as the word size of the platform.
The code that implements 4-bit vectors will be
radically different from the code that implements 48-
bit vectors, and is usually forced to be highly
dependent on conditional compilation constructs or
awkward preprocessor macros. Further, a C
implementation has to concern itself with memory
allocation, memory organization and pointer
manipulation details that are ripe sources of errors in C
code.

A Domain Specific Language for Cryptography
Whenever you have a specialized particular application
area, such as cryptography, there is usually a
significant gap between the concepts fundamental to
that application area, and the concepts available in a
traditional programming language. This gap causes a

CRYPTOL: High Assurance, Retargetable

Crypto Development and Validation

Page 4 of 8 © 2004 Galois Connections, Inc. All rights reserved.

tension whereby something is lost: usually either the
clarity and expressiveness of programs or the efficiency
of implementation. This tension also forces those that
implement applications in this area to be experts both
in the application domain, as well as experts in
programming. Domain Specific Languages are
languages tailored to the needs of a particular
application area that bridge the gap between the
application concepts and programming concepts. A
Domain Specific Language allows experts in the
application domain to express their ideas directly
without needing to become expert programmers.

Cryptography is a fundamentally mathematical
discipline with its own specialized idioms. At the same
time the implementation of cryptography must be
absolutely correct and highly efficient in order to be
practical and its use accepted. This sort of intersection
of specialized needs with demanding implementation
requirements lends itself well to the use of a Domain
Specific Language.

Introduction to Cryptol
Cryptol was designed to meet the challenges facing
crypto implementation. As a language for
cryptography, it was designed with feedback from
expert cryptographers at the National Security Agency,
and thus naturally speaks the language of
cryptographers. As a platform for validation and
verification, it is a formal language, and thus is
designed to be complete and unambiguous. As a
platform for generation, Cryptol is a declarative
language that is platform neutral.

The Cryptol language was initially designed to target
block symmetric cryptographic algorithms. During the
design phase, the five finalists for the Advanced
Encryption Standard (MARS, Serpent, TwoFish, RC6, and
Rijndael) were studied as good examples of state of the
art cryptographic algorithms. In addition, DES was
studied as an example of current practice. In studying
these various algorithms, the idea was to identify what
the algorithms had in common, as well as what
differences occurred among them. This process
identifies the idioms and concepts of a domain, as well

as the range of expression that is needed to capture
designs.

The data in cryptographic algorithms is typically
vectors of bits of varying sizes, usually ranging from 4
bits upwards to 128 bits, with 8 bit and 32 bit being
common sizes. Bit vectors are grouped together in
various ways (such as a 2D matrix of bits) to form
blocks, where a block is the unit of encryption, and in
the Advanced Encryption Standard consists of 128 bits.
To encrypt arbitrary amounts of data, a block algorithm
is iterated over a stream of blocks.

Another form of data in crypto algorithms is lookup
tables, also known as “substitution boxes”, or S-Boxes
for short. These are relatively small tables, e.g. a
table that maps 4-bit vectors to 8-bit vectors.

Cryptol uses the simple uniform concept of a sequence
to express how data is organized in a crypto algorithm.
Bit vectors are sequences of bits, matrices, tables and
blocks are sequences of sequences, and streams are
just sequences of blocks.

Literal sequences in Cryptol are written using brackets
surrounding the elements, and spaces separating them.
Sequences are indexed starting with zero, and are
written left-to-right in increasing index order. Bits are
written using the constants True and False. Thus,
the following is a 7 element sequence of bits:

[True False False True False True True]

Numbers in Cryptol are represented by bit vectors,
and, as is typical with crypto algorithms, explicitly use
modulus arithmethic, with the modulus based on the
size of the vector. For example, an 8-bit vector would
support arithmetic modulo 28. Numeric literals can be
written in the usual fashion, using the C convention for
expressing literals in a base other than 10, i.e. 0x10 is
a hexadecimal literal whose value is sixteen. Numbers
are encoded as sequences of bits using the little-endian
convention. Thus, the above sequence of bits may also
be written:

0x69

CRYPTOL: High Assurance, Retargetable

Crypto Development and Validation

Page 5 of 8 © 2004 Galois Connections, Inc. All rights reserved.

In addition to standard arithmetic, Cryptol also
supports polynomial arithmetic, which occurs in some
advanced cryptographic algorithms, such as AES and
TwoFish. Addition, multiplication, division, and
modulus are all supported over polynomials.
Polynomials are written in a fashion suggestive of the
mathematical notation. For example, the polynomial
x7+x5+x+1 is written in Cryptol as:

<| x^7 + x^5 + x + 1 |>

Polynomials are represented as a sequence of the
coefficients, with the coefficient for xn being the nth
element of the sequence. Commonly, the coefficients
are simply bits. For example, the polynomial written
above is represented as the sequence:

[True True False False
 False True False True]

There is a rich set of operators for manipulating
sequences, including basic ones like sequence
concatenation (#), and sequence indexing (@).

In addition to these various operators on sequences,
sequence comprehensions allow element-wise
specification of sequences. A sequence comprehension
has two parts: a defining expression, and a list of
generating sequences. The generating sequences
provide elements and the defining expression says how
to combine those elements into an element of the
resulting sequence. Here’s an example:

[| 2*x + y || x <- xs || y <- ys |]

The expression 2*x + y is the defining expression,
and the generating sequences are specified by x <-
xs and y <- ys, where xs and ys are the names of
two sequences, and x and y represent single elements
drawn from each sequence. The sequence that results
from this comprehension is defined as follows: the ith
element of the result sequence is defined as the value
of the expression 2*x + y, where x is equal to the ith
element of xs, and y is equal to the ith element of ys.
The length of the new sequence is the minimum of the

lengths of the generating sequences. For example,
given the sequences:

xs = [1 2 3]
ys = [5 6 7 8]

The resulting sequence is:

[7 10 13]

Control flow in cryptographic algorithms is typically
quite straightforward as data-dependent control is
avoided to prevent timing attacks. Most control flow
consists of simple iteration, and is written as for-loops
in pseudo code specifications. Unfortunately, for-loops
encode sequentiality, even when that sequentiality is
not inherent in the specification. Cryptol takes a
declarative approach: you specify a sequence of the
intermediate values leading to a final value (in the
style of a recurrence relation), instead of the
sequentially imperative style of specifying the steps
you would take to arrive at the final value. The
declarative approach has an added benefit: it
automatically provides a handle on all the intermediate
values. This is invaluable when using Cryptol to
generate test vectors.

Recurrence relations are specified in Cryptol as
recursive sequences. For example, the following
function sums up the elements of its argument
sequence by specifying all the intermediate sums
leading up to the final sum, and taking the last element
of that sequence to get the result.

sum xs = last ys
 where
 ys = [0] #
 [| x + y || x <- xs || y <- ys
|];

The final aspect of Cryptol that we need to touch on in
this brief introduction is the use of types. Types in
Cryptol express the size and shape of data. Consider
the sequence

CRYPTOL: High Assurance, Retargetable

Crypto Development and Validation

Page 6 of 8 © 2004 Galois Connections, Inc. All rights reserved.

zs = [[0x7a 0x1b] [0x26 0x5c] [0xb4
0x11]];

This is a sequence of 3 elements, each of which is a
sequence of 2 elements, each of which is a sequence of
8 bits. We write this in Cryptol as: [3][2][8]Bit.
The size of each sequence is given, wrapped in
brackets, from outermost to innermost. The innermost
type defaults to Bit and can be elided for
convenience.

Cryptol is a strongly typed language: every expression
and definition must have a valid type, and every value
and function must be used in a manner that is
consistent with its type.

The user may also supply type annotations on
definitions and expressions as a form of documentation
that is checked by Cryptol for consistency. Type
annotations on definitions, also called type signatures,
as written as a name, followed by a colon, and the type
that that name is to adhere to. For example, a valid
type signature for zs defined above is:

zs : [3][2][8];

AES in Cryptol
In this section, we present portions of a specification of
the Advanced Encryption Standard (AES) in Cryptol.

The first thing to define is the basic parameters of the
algorithm. The Rijndael algorithm, upon which AES is
defined, has three parameters: Nb, Nk, and Nr. These
three parameters specify the size (in bits) of the input
block divided by 32, the size of the key divided by 32,
and the number of rounds. The division by 32 has to do
with the fact that AES internally represents both the
block and the key as two dimensional matrices of
bytes, where the number of rows is fixed at four, and
the number of columns is specified by Nb and Nk
respectively (4*8=32). The AES is defined as the
instance where Nb is 4, Nk is either 4, 5, or 6, and Nr
is defined as the largest of Nb and Nk plus 6.

Nb = 4;
Nk = 4;
Nr = max(Nb, Nk) + 6;

There’s one more preliminary step—defining some
abbreviations that will be convenient later. The first is
an abbreviation for the type of the state, the two-
dimensional matrix of bytes that is the internal
presentation of the block of data being
encrypted/decrypted. The second is an abbreviation
for the type of the expanded key material.

State = [4][Nb][8]
Xkey = (State, [Nr-1]State, State)

Xkey is a triple consisting of initial key material, the
key material for the middle rounds, and the key
material for the final round. We can now write type
signatures for the inferface to the algorithm:

keySchedule : [4*Nk][8] -> Xkey
encrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8]
decrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8]

The first signature says that keySchedule is a
function that takes 4*Nk bytes, and returns the
expanded key material (Xkey). The functions encrypt
and decrypt take the expanded key, and 4*Nb bytes,
and returns the same. We now look at the top-level
encryption function.

encrypt (XK, PT) =
 unstripe (Rounds (State, XK))
 where State = stripe PT;

As you can see, local definitions can be introduced
using where clauses. The top-level call is basically a
call to the Rounds function wrapped with calls to
stripe and unstripe respectively. The stripe and
unstripe functions convert from and to the input, which
is a flat sequence of bytes into the two-dimensional
internal form of the state.

stripe : [Nb*4][8] -> [4][Nb][8];
stripe block = transpose (split block);

CRYPTOL: High Assurance, Retargetable

Crypto Development and Validation

Page 7 of 8 © 2004 Galois Connections, Inc. All rights reserved.

unstripe : [4][Nb][8] -> [Nb*4][8];
unstripe state = join (transpose state);

The split operator takes a sequence and splits it into a
sequence of sequences—where the amount of elements
(and the number of sub-elements in each) it splits the
input into is guided by the type signature. Then,
because the input is mapped onto the state in column-
major fashion, the split sequence is transposed. So,
first the [Nb*4][8] sequence is split into a
[Nb][4][8] sequence, then it is transposed into
column-major format to a [4][Nb][8] sequence. The
unstripe function is reverse analogous—first
transpose, the use join, to combine the two-
dimensional sequence of bytes end-to-end into a one-
dimensional sequence.

The Rounds function specifies the round structure of
the algorithm. First, the initial key material is added
into the initial state to make the starting point for the
rounds iteration (rnd0). Then, we define the sequence
of round intermediate values using a recursive
sequence definition (rnds). Lastly, the final round is
called on the last of the round intermediate values
with the final key (the final round in AES is a variant of
the previous rounds). The body of the rounds iteration
is simply a call to the Round function using the
current state, and the round keys for that round.

Rounds (State,
 (initialKey, rndKeys, finalKey))
=
 final
 where {
 rnd0 = AddRoundKey(State,initialKey);
 rnds = [rnd0] # [| Round (state, key)
 || state <- rnds
 || key <- rndKeys |];
 final =
 FinalRound (last rnds, finalKey);
 };

The Round function is the heart of the algorithm. It
takes the current state, and a round key, and takes the

state through four transformations, returning the final
result.

Round : (State, State) -> State;
Round (State, RoundKey) = State4
 where {
 State1 = ByteSub State;
 State2 = ShiftRow State1;
 State3 = MixColumn State2;
 State4 =
 AddRoundKey (State3, RoundKey);
 };

The BytesSub function is a State to State
transforming function, as the type signature indicates.
It is defined as a nested comprehension—for each row
in the state, it produces a new row, where each
element has had the sbox function applied to it. The
effect is simply an element-wise application of the
sbox function to each byte of the state.

ByteSub : State -> State;
ByteSub state =
 [| [| sbox x || x <- row |]
 || row <- state |];

The ShiftRow function is also a State to State
transforming function. For each row of the state, that
row is circularly shifted a certain number of positions
to the left. The amount of the shift depends on which
row, so the comprehension has an additional generator:
i<-[0 ..] that generates an increasing index
counter starting with 0. This index is used in the call
to the shift function, which calculates the actual
amount of shift. The <<< operator performs a circular
shift of the top-level elements of its left-hand
argument sequence.

ShiftRow : State -> State;
ShiftRow state =
 [| row <<< shift (Nb, i)
 || row <- state
 || i <- [0 ..] |];

shift : ([8], [4]) -> [4];
shift (nb, i) = j

CRYPTOL: High Assurance, Retargetable

Crypto Development and Validation

Page 8 of 8 © 2004 Galois Connections, Inc. All rights reserved.

 where j = if (i < 2) | (nb < 8)
 then i else i + 1;

The MixColumn function is again a State to State
transformer. It operates on the state in a column
major fashion—hence the state is first transposed, then
we perform the multCol operation (which we won’t
look at here) on each column, and transpose the result.

MixColumn : [4][Nb][8] -> [4][Nb][8];
MixColumn state =
 transpose [| multCol (cx, col)
 || col <- transpose state
 |];

It’s worth noting that the above is a specification—not
an imperative as to how to implement the
specification. If this code were compiled, an
optimizing compiler has enough information to turn the
transpose operations into an efficient re-indexing of
the state, instead of a costly pair of transpose
operations.

The final round transformation adds the round key
material to the state by bit-wise exclusive-or. In
Cryptol, this is easily expressed using the exclusive-or
operator ^. The exclusive-or operator, like all of the
Boolean operators, applies to arbitrary types by
extending bit-wise in the natural fashion.

AddRoundKey : (State, State) -> State;
AddRoundKey (State, Key) = State ^ Key;

Status of Cryptol
Galois Connections has currently implemented the
Cryptol™ development tool. It provides an interpreter
for Cryptol, a tracing and debugging facility that is
useful for generating test vectors and intermediate
values for any named subpart of a specification. It also
provides a compiler that generates C code.

Currently under development is support for automated
verification using Binary Decision Diagrams (BDDs). In

addition, an optimized version of the C compiler is also
underway.

In the near future, we expect to begin work on a
compiler to target Cryptol specifications straight down
to FPGAs, which are reconfigurable hardware devices.

Conclusion
There are a number of challenges in implementing
cryptography efficiently and correctly. The highly
specialized nature of cryptography, and the many
requirements on implementations under a wide variety
of architectures offers a ripe opportunity for a
specialized language and tools. Cryptol was designed
to meet these needs. We have presented a number of
ways in which Cryptol may be used, given a flavor of
what the language looks like, and shown what the
current Advanced Encryption Standard looks like in
Cryptol.

