

Cryptographer as designer
You are a highly skilled crypto-

grapher charged with designing a custom,
state-of-the-art encryption solution for
protecting mission-critical information.
There are explicit and competing
requirements for the implementation—
throughput, size, power utilization,
operation temperature, etc.—that may
affect the implementation.

You produce a design and want
to see how it matches up with the
implementation requirements. How
would you proceed?

Typically, you find an expert
hardware designer who translates your
algorithm into VHDL (a hardware
description language), and then runs
proprietary tools to characterize the
implementation. If it uses too much power,

or has insufficient throughput, or..., the
hardware designer iteratively tweaks the
design until it is “good enough.”

But how do you know if it still
works the way you intended?

Typically, the design is fabricated
(if it is an ASIC—application-specific
integrated circuit) or loaded into an FPGA
(field-programmable gate array), placed

into a test harness, and blasted with test

vectors. If it works, great. Otherwise, the

search begins to find the error.

And what if a security hole; for

example, a malicious counter or a back

door; was introduced? Would you even

know?

There must be a better way.

Empowering the Experts:
High-Assurance, High-Performance,
High-Level Design with Cryptol

Sally A. Browning, Magnus Carlsson, Levent Erkök,
John Matthews, Brad Martin, Sean Weaver

A domain-specific language (DSL) is a programming language targeted
at producing solutions in a given problem domain by enabling subject-
matter experts to design solutions in terms they are familiar with

and at a level of abstraction that makes most sense to them. In addition, a
good DSL opens the way for powerful tool support: simulations for design
exploration; automatic testing and generation of test harnesses; generation
of highly specialized code for multiple targets; and generation of formal
evidence for correctness, safety, and security properties.

Figure 1: Traditionally, the
crypto developer must be highly
trained and expert at balancing
a myriad of often conflicting
requirements.

Image Source: Galois, Inc.

1

kprewit
Typewritten Text

kprewit
Typewritten Text

kprewit
Typewritten Text

Cryptol: A better way
The Cryptol specification language

was designed for the National Security
Agency (NSA) as a public standard for
specifying cryptographic algorithms [1].
The Cryptol tools provide a development
path for cryptographic modules across the
entire software process, from specification
and implementation to verification and
certification. Cryptol tools significantly
reduce overall life-cycle costs by
addressing the key cost drivers in the
deployment of cryptography.

Rapid design cycle

Cryptol specifications are
fully executable, allowing designers
to experiment with their programs
incrementally as their designs evolve.
The Cryptol tools support a refinement
methodology that bridges the conceptual
gap between specification and low-level
implementation, thereby reducing time
to market. For example, Cryptol allows
engineers and mathematicians to program
cryptographic algorithms on FPGAs as if
they were writing software.

Reusable specification

The Cryptol tools provide a
platform-neutral specification language
that generates implementations on multi
ple platforms. Cryptol tools can generate
software implementations, hardware
implementations, and formal models for
verification, all from a single Cryptol
program.

Accelerated certification

A Cryptol reference specification
becomes the formal documentation for
the cryptographic module, eliminating
the need for separate and voluminous
English descriptions. In addition, Cryptol
verification tools show functional
equivalence between the specification
and the implementation at various stages
of the toolchain.

Design: The Cryptol
language

Cryptol [1] is a pure functional
language built on top of a polymorphic
type system that has been extended with
size polymorphism and arithmetic type
predicates designed to capture constraints
that arise naturally in cryptographic
specifications.

Figure 2 shows an excerpt from
the AES specification [2] that describes
the generator inputs and outputs, and the
corresponding Cryptol definition. The
text to the left of => ([128],[64*k]) in the
Cryptol definition describes quantified
type variables and predicates on them. In
this case, the type is size polymorphic,
relying on the size variable k. The

predicates constrain the range of values
the quantified size variables can accept;
here, k must be between 2 and 4. To the
right of the =>, we see the actual type.
The function has two inputs: a 128-
bit word containing the plaintext and a
64*k-bit wide key. The function outputs
another 128-bit word, the ciphertext. Note
the precise correspondence of the type to
the English description in the standard.

Figure 3 shows a Cryptol code
snippet—a specification for the core of
the DES algorithm. Note the compact
mathematical function notation and the
definition of sequence structures and bit
sizes. The Cryptol Reference Manual [4]
has many more examples as well as a
detailed description of the language.

Figure 2: The constraints and requirements from the Advanced Encryption Standard
(AES) [2] can be translated directly into Cryptol types, as shown above. The colored
text shows the linkage between English constraint and Cryptol type.

From Section 3.1 of the AES definition [2]:

The input and output for the AES algorithm each consist of sequences
of 128 bits... The Cipher Key for the AES algorithm is a sequence of
128, 192 or 256 bits. Other input, output and Cipher Key lengths are
not permitted by this standard.

In Cryptol:
{k}{k>= 2, 4 >= k)
	 => ([128],[64*k]) -> [128]

Image Source: Galois, Inc.

des : ([64],[56]) -> [64];
initial

permutation

plaintext

([] []) []
des (pt, key) = permute (FP, last)

where {
pt’ = permute (IP, pt);
iv = [| round (lr key rnd) f^

L0 R0

K1

iv = [| round (lr, key, rnd)
|| rnd <- [0 .. 15]
|| lr <- [(split pt’)] # iv
|];

L1=R0 R1=L0^f(R0,K1)

K
2last = join (swap (iv @ 15));

swap [a b] = [b a];
}; L2=R1 R2=L1^f(R1,K2)

f^ 2

round : ([2][32], [56], [4]) -> [2][32];
round([l r], key, rnd) = [r (l^f(r, kx))]

where {
k d(k d)

L15=R14 R15=L14^f(R14,K15)

K16

kx = expand(key, rnd);
f(r,k) = permute(PP, SBox(k^permute(EP, r)));

}; R16=L15^f(R15,K16) L16=R15

f^

inverse initial
permutation

ciphertext

Image Source: Galois, Inc.

Figure 3: The Data Encryption Standard (DES) algorithm is a block cipher that
uses a 56-bit symmetric key. The diagram above is taken from the Standard [3].
Cryptol uses parallel stream comprehensions to interleave data and lazy evaluation
to encapsulate multiple computational stages in a single statement. Colors and
shapes are used to help relate the program text to the diagram. Details of the
language can be found in [4] and at www.cryptol.net.

2

Implement:
The Cryptol FPGA

Type 1 cryptographic devices
protect information of national
importance. The information assurance
standards for such products are
correspondingly high. In addition, crypto
modernization requirements mandate field
programmability, and various operational
requirements call for a reduced space,
weight, and power footprint.

FPGAs offer a compelling platform
to address these needs. They are field
updatable by design, offer tremendous
performance potential, and have fewer
nonrecurring engineering costs than
traditional ASIC designs.

However, FPGA development
still requires the considerable time and
talents of skilled hardware designers,
which increases development time
and costs. Mainstream design tools
supplied by FPGA vendors have more
in common with VLSI (very-large-
scale integration) design tools than with
modern programming environments.
These design tools automatically limit
the user population to designers trained in
VLSI design.

The Cryptol FPGA generator
introduces a new design flow that allows
engineers and mathematicians to program
cryptographic algorithms on FPGAs
in a high-level language incorporating
concepts and constructs familiar to
cryptologists. The vision is that instead
of demanding low-level hardware design
knowledge, users are able to express their
designs and programs at a much higher
level of abstraction and take advantage
of powerful automated mechanisms
for generating, placing, and routing the
circuits.

In some ways, the mathematics
behind a cryptographic specification is
like a hardware description. Both give
unambiguous specification of how bits
are to be handled and how bit-level

operations are to be applied. But there
the resemblance ends. Sequences, which
appear repeatedly in the mathematical
descriptions of crypto algorithms,
have many different instantiations as
hardware. At one extreme, the sequence
can be spread out in space as side-by-
side parallelism. At the other extreme,
the sequence can be laid out in time as
consecutive values held in a register, or
over many registers in a pipeline. Many
combinations of these are also possible.

The Cryptol FPGA generator uses a
wide variety of engineering heuristics to
pick an appropriate translation of a Cryptol
function to an FPGA configuration that
will make effective and efficient use of
the silicon. The user can also provide
pragmas (compiler commands) about
space/time mappings, thereby guiding the
translation process without compromising
the integrity of the original specification.

The declarative quality of Cryptol,
which makes Cryptol a good specification
language, also plays a key role in the
effectiveness of automatic generation
of FPGA cores. In contrast, the inherent
sequentiality of mainstream program
ming languages makes them a poor match
for the highly parallel nature of FPGAs.

Creating high-performance
designs

The Cryptol FPGA generator
produces cores whose throughput and
area usage have been comparable to
(and in some cases better than) hand-
coded VHDL/Verilog. For example, an
implementation of 128-bit AES for the
Xilinx Virtex 4 FPGA has been generated
with clock rates in excess of 200 MHz
(which translates to throughput of better
than 25 Gbps) using only 6912 slices (25
percent of the slices on the chip) and 100
Block RAMs (62 percent of the available
Block RAMs). Theoretical results based
on Xilinx tools indicate that 500 MHz (65
Gbps) is achievable by these cores.

High-level exploration of
the design space

Good design is always at the root of
great performance. One of the key factors
in Cryptol’s performance results is its
ability to explore the implementation
design space at a very high level. A
Cryptol developer can experiment with
many different microarchitectures in the
course of a few days, covering ground
that would otherwise take weeks or
months using traditional methods. A
variety of implementation approaches can
be modeled and characterized quickly.

For example, at the Cryptol level,
a straightforward idiom identifies pipe-
lined functional units in hardware. Recall
the specification for DES shown in Figure
3. The designer has created a pipelined
version of the round function by hand
by factoring the high-level Cryptol
specification, as shown in Figure 4. The
Cryptol FPGA generator produces an
efficient pipelined circuit, also shown in
Figure 4 on page 8.

High-level design exploration pro-
vides a profound advantage in the devel-
opment of high-performance algorithms
(or in algorithms meeting other design
constraints). The key is the speed with
which the developer is able to iterate the
design, the bottleneck of hardware design.
A crypto developer can produce rapid de-
sign iterations using the Cryptol Toolkit,
effectively increasing productivity by up
to an order of magnitude over traditional
VHDL development.

Trust: The Cryptol
verification framework

The FPGA generator uses semantic
models to establish the correctness of
the process. To gain final assurance,
Cryptol developer Galois provides an
automatic equivalence checker to prove
that the actual code that will run on the
FPGA is equivalent to the reference
implementation.
 3

The Cryptol equivalence checker
utilizes state-of-the-art SAT (Boolean
satisfiability) and SMT (satisfiability
modulo theories) solvers as proof engines,
together with custom heuristics and
techniques. For example, the equivalence
checker can show the equivalence of an
AES specification written in Cryptol
with an unrolled, pipelined VHDL
implementation of AES generated from
Cryptol and passed through the Xilinx
toolchain all the way to place and route.

Two classes of problems

Cryptol’s verification framework
has been designed to address equivalence-
and safety-checking problems.

The equivalence-checking problem
asks whether two functions, f and g, agree
on all inputs. Typically, f is a reference
implementation of some algorithm,
following a standard textbook-style
description, and g is a version optimized
for time and/or space for a particular
target platform. The equivalence-
checking framework allows a developer
to formally prove that f and g are
semantically equivalent, ensuring that
the often very complicated and extensive
optimizations performed during synthesis
have not introduced bugs. Note that the
final implementation g does not need to
be in Cryptol—an important use case of
the verification framework is to verify that
third-party algorithm implementations
(typically in VHDL) are functionally
equivalent to their high-level Cryptol
versions. In this case, Cryptol acts as a
hardware/software verification tool [5].

The safety-checking problem is
about run-time exceptions. Given a
function f, we would like to know if f’s
execution can perform operations such as
division by zero or index out of bounds.
These checks are essential for increasing
the reliability of Cryptol-generated
implementations, since they eliminate the

round : [inf]([2][32],[56]) -> [inf]([2][32],[56]);
round data0 = data3

where {
data1 = [zero] # [| (expand key ^ permute(EP, r), [l r], key)

|| ([l r] key) <- data0|| ([l r], key) <- data0
|];

data2 = [zero] # [| (SBox(kx), [l r], key)
|| (kx, [l r], key) <- data1
|];

data3 = [zero] # [| ([r (l ^ permute(PP, sb))], key)
|| (sb, [l r], key) <- data2
|];|];

};

key key key key
data0 data1 data2 data3

y

r

l

y

kx

l

r

y

sb

l

r

expand SBox PP

XOR

XOR

y

lpx

r

EP

Figure 4: The code snippet above shows a new implementation of the DES
round function, shown in Figure 3 on page 6. A flow diagram is included, with
colors showing the correspondence between code and diagram element. This
version uses sequence comprehensions that can be performed in parallel
and introduces extra variables that translate into registers and pipelined
operations in the VHDL implementation.

Figure 5: Verification can be performed at various points during the translation,
which allows for high-assurance refinement during development. Note that
the major compiler phases (the flow through the top line) remain outside the
trusted-code base for verification. Trust in the down-arrows, representing
translators from various intermediate forms to formal models, along with the
off-the-shelf equivalence checkers themselves, is all that is needed.

Image Source: Galois, Inc.

Image Source: Galois, Inc.

4

need for sophisticated run-time exception
handling mechanisms.

The Cryptol toolset comes with a
push-button equivalence/safety checking
framework to answer these questions
automatically for a large subset of the
Cryptol language [6]. Cryptol uses off-
the-shelf SAT/SMT solvers such as
ABC [7] or Yices [8] as the underlying
equivalence-checking engine, translating
Cryptol specifications to appropri
ate inputs for these tools automatically.
However, the use of these external tools
remains transparent to the users, who
only interact with Cryptol as the main
verification tool.

Of course, equivalence checking
applies not only to handwritten programs
but also to generated code. Cryptol’s
synthesis tools perform extensive and
often very complicated transformations
to turn Cryptol programs into hardware
primitives available on target FPGA
platforms. The formal verification
framework of Cryptol allows equivalence
checking between Cryptol and netlist
representations that are generated by
various parts of the compiler, as we will
explain shortly. Therefore, any potential
bugs in the compiler itself are also caught
by the same verification framework. This
is a crucial aspect of the system: proving
the Cryptol compiler correct would be an
extremely challenging if not impossible
task. Instead, Cryptol provides a verifying
compiler that generates code along with a
formal proof that the output is functionally
equivalent to the input.

Design and verification flow
Figure 5 provides a high-level

overview of a typical Cryptol development
and verification flow. Starting with a
Cryptol reference specification, the
designer iteratively refines the program
and “runs” it at the Cryptol command
line. These refinements typically
include various pipelining and structural

transformations to increase speed and/or
reduce space usage. Behind the scenes,
the Cryptol toolchain translates Cryptol to
a custom signal-processing intermediate
representation (SPIR), which acts as a
bridge between Cryptol and FPGA-based
target platforms. The SPIR representation
allows for easy experimentation with
high-level design changes, because it
remains fully executable while also
providing essential timing/space usage
statistics without going through the
computationally expensive synthesis
tasks.

Once the programmer is happy with
the design, Cryptol translates the code to
VHDL, which is further fed to third-party
synthesis tools. Figure 5 shows the flow
for the Xilinx toolchain, taking the VHDL
through synthesis, place and route, and
bit-file generation steps. In practice,
these steps might need to be repeated,
using feedback from the synthesis tools,
until the implementation satisfies the
requirements. The overall approach aims
at greatly reducing the number of such
repetitions by providing early feedback
to the user, at the SPIR level. The final
outcome is a binary file that can be
downloaded onto a Xilinx FPGA board,
completing the design process.

Cryptol’s verification flow is
interleaved with the design process. As
depicted in Figure 5, Cryptol provides
custom translators at various points in
the translation process to generate formal
models in terms of AIG (and‐inverter-
graph) representations [9]. In particular,
the user can generate AIG representations
from the reference (unoptimized) Cryptol
specification, from the target (optimized)
Cryptol specification, from the SPIR
representation, from the post synthesis
circuit description, and from the final
(post-place-and-route) circuit description.
By successive equivalence checking of
the formal models generated at these

check points, Cryptol provides the user
with a high-assurance development
environment, ensuring that the applied
transformations preserve semantic
equivalence. The final piece of the puzzle
for end-to-end verification is generating
an AIG for the bit file generated by the
Xilinx tools, as represented by the dashed
line in Figure 5. At this time, the format of
this file remains proprietary.

Verification for the cryptography
domain: Why this works

Cryptol’s formal verification
framework clearly benefits from recent
advances in SAT/SMT solving. However,
it is also important to recognize that the
properties of cryptographic algorithms
make applications of automated formal
methods particularly successful. This
is especially true for symmetric key
encryption algorithms that rely heavily
on low-level bit manipulations instead
of the high-level mathematical functions
employed by public-key cryptography.

In particular, symmetric-key
cryptographic algorithms almost never
perform control flow based on input data,
in order to avoid attacks based on timing.
The series of operations performed are
typically “fixed,” without any dependence
on the actual input values. Similarly, the
loops used in these algorithms almost
always have fixed bounds; typically these
bounds arise from the number of rounds
specified by the underlying algorithm.
Techniques like SAT-sweeping [10] are
especially effective on crypto‐algorithm
verification, since simulation-based
node-equivalence guesses are likely to
be quite accurate for algorithms that
rely heavily on shuffling input bits.
Obviously, these properties do not make
formal verification trivial for this class of
crypto algorithms; rather, they make the
use of such techniques highly feasible in
practice [11].

5

Verify: Evaluating
third-party VHDL
implementations

The process of verification in
Cryptol typically begins with
understanding the high-level interface of
the VHDL implementation under study.
Through Cryptol’s foreign-function
interface, the base interface to the VHDL is
simply imported using Cryptol’s “extern”
declaration capability. Then the required
interface-matching code is written in
Cryptol, mainly implementing the proper
use of control signals. This process makes
the external implementation available at
the Cryptol command prompt, enabling
the user to call it on specific values, pass it
through previously generated test vectors,
essentially making the external definition
behave just like any other Cryptol
function. This facility greatly increases
productivity, since it unifies software and
hardware under one common interface.
Once the reference specification and
the Cryptol/VHDL hybrid expose the
same interface, the user generates formal
models for both of them, and checks for
equivalence.

Challenges ahead
Increasing the coverage of formal

methods. Cryptol’s formal verification
framework works on a relatively large
subset of Cryptol [6]. The main limitation
is in verifying algorithms for all time, i.e.,
programs that receive and produce infinite
streams of data. Currently, Cryptol
can verify such algorithms only up to a
fixed number of clock cycles, effectively
introducing a time bound. While this
restriction is irrelevant for most block-
based crypto algorithms, it does not
generalize to stream ciphers in general.
The introduction of induction capabilities
in the equivalence checker or the use of
hybrid methods combining manual top-
level proofs with fully automated SAT/
SMT-based sub proofs might provide
a feasible alternative for handling such
problems.

 Proving security properties. Not

all properties of interest can be cast as

functional equivalence problems. This

is especially true for cryptography. For

instance, if we are handed an alleged

VHDL implementation of AES, in

addition to knowing that it implements

AES correctly, we would like to be

sure that it does not contain any “extra

circuitry” to leak the key. In general,

we would like to show that an end user

cannot gain any information from an

implementation that cannot be obtained

from a reference specification.

Reducing the size of the trusted
code base. Cryptol’s formal verification

system relies on the correctness of the

Cryptol compiler’s front-end components

(i.e., the parser, the type system, etc.), the

symbolic simulator, and the translators

to SAT/SMT solvers. Note that Cryptol’s

internal compiler passes, optimizations,

and code generators (i.e., the typical

compiler back-end components) are not

in the trusted code base. While Cryptol’s

trusted code base is only a fraction of the

entire Cryptol tool suite, it is nevertheless

a large chunk of code from the open-

source functional programming language,

Haskell. Reducing the footprint of this

trusted code base, and/or increasing

assurance in these components of the

system, is an ongoing challenge.

Acknowledgements
Many people have worked on

Cryptol and its formal verification toolset

over the years, including Sigbjorn Finne,

Andy Gill, Fergus Henderson, John

Launchbury, Jeff Lewis, Thomas Nordin,

Lee Pike, Mark Shields, Joel Stanley,

Frank Seaton Taylor, Philip Weaver, and

Adam Wick.

Men Long of Intel and Stefan Tillich

of TU Graz kindly made their VHDL

code available to us for verification and

answered several questions about their

implementations.

General Dynamics C4 Systems,
Rockwell Collins, and Michal Kouril
have graciously allowed us to write about
their experiences with the Cryptol tools.

About the authors
Galois is a research and development

company with a strong drive to transition
technology from research into practice in
the commercial and government sphere.
Since our founding in 1999, we have been
funded for research and development by
members of the Intelligence Community,
the Departments of Defense, Homeland
Security, and Energy, and the National
Aeronautics and Space Administration.

Dr. Sally A. Browning (PhD,
California Institute of Technology) leads
the Cryptol family of projects at Galois.
Dr. Magnus Carlsson (PhD, Chalmers
University), Dr. Levent Erkök (PhD,
Oregon Graduate Institute), and Dr.
John Matthews (PhD, Oregon Graduate
Institute) are key members of the team,
with world-class expertise in functional
programming, language design and
formal methods.

The High Confidence Software
and Systems (HCSS) Division supports
development of scientific foundations and
technologies for innovative systems de-
sign, systems and embedded application
software, and assurance and verification
to enable the routine production of reli-
able, robust, safe, secure, and certifiably
dependable IT-centric physical and engi-
neered systems. The HCSS Division re-
sides within NSA’s National Information
Assurance Research Laboratory, a labora-
tory responsible for conducting and spon-
soring research in the technologies and
techniques needed to secure America’s
future information systems.

Brad Martin manages NSA’s HCSS
Division. In 1999 Brad Martin and John
Launchbury, founder and chief scientist
of Galois, conceived of Cryptol. Sean
Weaver is a researcher within the HCSS
Division and is the current technical lead
for NSA’s Cryptol Program.

6

Cryptol
reference

specification

Symbolic
evaluator

Symbolic
evaluator

Equivalence
checker

Synthesis

Netlist Bitfile

Reference
model

Netlist
model

Handwritten
VHDL

implementation

Q: What can YOU do with Cryptol?
A: Gain assurance about your design.

Van der Waerden’s theorem states that for any
positive integers r and k there exists a positive
integer N such that if the integers {1 2 ...N }
are colored, each with one of r different colors,
then there are at least k integers in arithmetic
progression all of the same color. For any r and
k, the smallest such N is the van der Waerden
number W(r,k).

Van de Waerden numbers are difficult to
compute. In 2007, Dr. Michal Kouril of the
University of Cincinnati established that
W(2,6)=1132 (i.e., 1132 is the smallest
integer N such that every 2-coloring of {1 2
...N} contains a monochromatic arithmetic
progression of length 6) [19]. The most recent
previous result, W(2,5)=178, was discovered
some 30 years earlier. Kouril computed W(2,6)
using a special SAT-solver and clever techniques
to bound the search and employed FPGAs to
speed up the search.

Kouril wrote VHDL to program the FPGAs.
In order to convince himself that the FPGA
ensemble was doing what he expected, he also
expressed his algorithm in Cryptol, generated
formal models for both the Cryptol specification
and the VHDL implementation, and verified that
the two were equivalent!

Why not let Cryptol generate the solution?
So far no one has found a way to prove
unsatisfiability of W(r,k) directly without an
extensive search. The reliance on search makes
the problem hard; and although people have
found ways to generate long partitions without
a monochromatic arithmetic progression [20],
the true test that there are no longer partitions
is currently only possible using a search.

Q: What can YOU do with Cryptol?

A: Create a crypto algorithm and
	 generate test vectors.

“...an experienced Cryptol programmer given
a new crypto program specification and a soft
copy of test vectors can be expected to learn
the algorithm and have a fully functional and
verified Cryptol model in a few days to a week.”

“The AIM crypto engine software engineers
at General Dynamics C4 Systems use the
Cryptol modeling language as part of their
Software Engineering Institute CMM® Level
5 development process. Cryptol provides four
basic benefits leading to the certification of
crypto equipment. First, Cryptol allows the
design engineer to rapidly express an algorithm
in a common mathematical notation, which
is fully executable on the Cryptol interpreter,
providing verification that the algorithm is
completely understood. Second, the Cryptol
notation for the various components of the
algorithm are used to annotate the AIM micro
sequencer code which provides much greater
readability of that extremely dense assembly
language. Third, component testing of AIM
code, from small snippets through major
subroutines is greatly facilitated with Cryptol
generated test vectors derived from end-to-
end test vectors provided in algorithm source
specifications. Finally, Cryptol models are
evolving to directly support the certification
effort...”

Alan Newman
General Dynamics
C4 Systems

Cryptol
reference

specification

Cryptol
interpreter

QuickCheck

Test
vectors

Q: What can YOU do with Cryptol?

A: Produce and refine a family
of designs.

A team of developers from Rockwell Collins,
Inc. and Galois, Inc. has successfully produced
high-speed embedded Cryptographic Equipment
Applications (CEAs), automatically generated
from high-level specifications. An algorithm
core generated from a Cryptol specification for
AES-256 running in Electronic Codebook mode
demonstrated throughput in excess of 16
Gbps. These high-speed CEA implementations
comprise a mixture of software and VHDL,
and target a compact new embedded platform
designed by Rockwell Collins. Notably, almost no
traditional low-level interface code was required
in order to implement these high-performance
CEAs. In addition, automated formal methods
prove that algorithm implementations faithfully
implement their high-level specifications.
Significantly, the Rockwell Collins/Galois team
was able to design, implement, simulate,
integrate, analyze, and test a complex CEA on
the new hardware in less than 3 months.

AES-256, ECB mode,
Virtex-4 technology

Implementation
characteristics

Clockrate

(MHz)

Resources

(slices)

Throughput

(Gbps/
second)

Optimized for
high throughput 127.5 2690 16.3

Optimized to minimize
resource usage 135.1 849 1.2

Handwritten,
minimal size 102.0 2535 0.9

Cryptol
reference

specification

Cryptol
implementation
specification

System
simulation

Symbolic
evaluator

Cryptol
interpreter

Cryptol
compiler

Synthesis

Equivalence
checker

Equivalence
checker

Test
vectors

Test
Vectors

C

VHDL

Netlist

Netlist
model

Bitfile

Reference
model

Symbolic
evaluator

Symbolic
simulator

Implementation
model

Image Source: Galois, Inc.

Image Source: Galois, Inc.
Image Source: Galois, Inc.

7

Q: What can YOU do with Cryptol?
A: Gain assurance about someone
	 else’s design.

Skein [12] is a suite of cryptographic hash
algorithms targeted at the NIST SHA-3
competition [13]. At its core, Skein uses a
tweakable block cipher named Threefish. The
unique block iteration (UBI) chaining mode
defines the mode of operation by the repeated
application of the block cipher function.

Galois developed and published a Cryptol
specification for Skein [14]. We have verified two
independently developed VHDL implementations
of Skein against our specification for one 256-
bit input block, generating a 256-bit hash value.

The first verification was performed against
Men Long’s implementation [15]. Long
implemented only the underlying Threefish
encryption and the XOR of input data; we
modified our reference specification to
match. The AIG generated from the Cryptol
specification had 118,156 AND-gates; the
VHDL version was more than five times as
large, with 653,963 AND-gates. Equivalence
checking took about an hour to complete on
commodity hardware using ABC [7].

In this work, we encountered a problem
with Long’s VHDL code that rotated a 64-bit
signal a variable distance. The code was given
different meanings by GHDL [16], simili [17],
and the Xilinx synthesis tools. We removed
the ambiguity by replacing it with the standard
library function rotate_left. Thus, the Cryptol
verification path identified an otherwise
undetected ambiguity bug.

The second verification was performed against
Stefan Tillich’s full Skein implementation [18].
The AIG sizes in this case were 301,085 AND-
gates for the reference Cryptol versus 900,239
AND-gates for the VHDL implementation: about
three times larger. Equivalence checking was
completed in about 18 hours, again using ABC.

Q: What can YOU do with Cryptol?
A: Teach and learn about cryptography, satisfiability theory,....

“Cryptol was quite an experience. We began with simple sequences such as [1 2 3 4] and by
applying ‘@’ and ‘!’ to our list of numbers, we learned the priority/position of each number: when
using @, the order is zero based, [0th 1st 2nd 3rd], and when using !, the order is reversed, [3rd
2nd 1st 0th]. Each number or element contains a certain numbers of bits: 1 (0b1) contains one
bit, 2 (0b10) is two bits, 3 (0b11) is also two bits and 4 (0b100) is three bits.

Once the group grasped the concept of bits, we moved on to shifting and permuting sequences
using split, join, splitBy, groupBy, take, drop, reverse, and transpose. We then applied these fun-
damentals we had learned about Cryptol to interact with its interpreter and to explore some of the
concepts we had learned earlier in the year, such as Pascal’s Triangle, the Fibonacci sequence, the
sum of a series of odds, even, etc. Once that was complete, and given that Cryptol’s intended use
is cryptography, we used Cryptol to encrypt plaintext and decrypt ciphertext for a range of classes
of cryptographic algorithms, to include classic (substitution and transposition) and modern (sym-
metric and asymmetric) cryptographic systems.

We concluded our study of Cryptol by looking into
propositional logic and satisfiability, and ultimately
at a satisfiability solver that could be called from
within the Cryptol interpreter. In our examination
of propositional logic, we were initially forced
to prove our satisfying assumptions by hand
through the construction of small truth tables
with assignments of values with the goal of having
the formula evaluate to ‘true’, that is, they were
satisfied. To extend these concepts we utilized
the automated satisfiability solver that we could
call from the Cryptol interpreter. One application
where we were able to represent a problem
within Cryptol and to utilize the satisfiability solver
was in solving Sudoku puzzles. It was an amazing
experience and I will continue to play around with
Cryptol and the satisfiability solver because it was
so very intriguing.”

Excerpt from a report by Avery Tose, a senior
attending Lighthouse Christian Academy in
Stevensville, Maryland, who participated in
“Exploring Science through Patterns in Nature,”
an enrichment activity led by Brad Martin, NSA,
May, 2009.

Q: What can YOU do with Cryptol?
A: Make a MILS FPGA.

The Cryptol Development Toolkit from
Galois provides a tool flow that puts FPGA
implementation into the hands of mainline
developers, improving both productivity and
assurance, without sacrificing performance.

The Xilinx Single Chip Cryptographic (SCC)
technology enables Multiple Independent
Levels of Security (MILS) in a single chip.
These two technologies fit seamlessly into a
single development flow.

The combined solution can address
high-grade cryptographic application
requirements (redundancy, performance,
red/black data, and multiple levels of
security on a single chip) as well as high
assurance development needs (high-
level designs, automatic generation of
implementation from design, automatically-
generated equivalence evidence), and has
the potential to significantly reduce the time
of costs of developing Type-1 cryptographic
applications.

Cryptol
implementation
specification

Equivalence
checker

Equivalence
checker

Netlist
NetlistVHDL

Handwritten
VHDL

implementation

Cryptol
reference

specification

Image Source: Galois, Inc.
Image Source: Galois, Inc.

8

FEATURE

References
[1] Lewis JR, Martin B. Cryptol:
High-assurance, retargetable crypto
development and validation. In:
Proceedings of Military Communications
Conference 2003 (MILCOM 2003);
Oct 2003; Monterey (CA). p. 820–
825. Available at: doi: 10.1109/
MILCOM.2003.1290218

[2] Announcing the AES. NIST; Nov
2001. FIPS Publication 197. Available
at: http://csrc.nist.gov/publications/Pubs
FIPS.html

[3] Data Encryption Standard (DES).
NIST; Oct 1999. FIPS Publication
46–3. Available at: http://csrc.nist.gov/
publications/PubsFIPS.html

[4] Galois, Inc. The Cryptol reference
manual. Available at: http://www.cryptol.
net

[5] L. Erkök L, Carlsson M, Wick A.
Hardware/software co-verification of
cryptographic algorithms using Cryptol.
In: Proceedings of Formal Methods
in Computer Aided Design (FMCAD
‘09); Nov 2009; Austin, (TX). p.
188–191. Available at: doi: 10.1109/
FMCAD.2009.5351121

[6] Erkök L, Matthews J. Pragmatic
equivalence and safety checking in
Cryptol. In: Proceedings of Programming
Languages meets Program Verification
(PLPV’09); Jan 2009; Savannah (GA). p.
73–81. Available at: http://portal.acm.org/
citation.cfm?id=1481860

[7] Mishchenko A. Berkeley Logic
Synthesis and Verification Group. ABC:
System for sequential synthesis and
verification, release 70930. Available at:
http://www.eecs.berkeley.edu/~alanmi/
abc

[8] Yices: An SMT Solver. Available at:
http://yices.csl.sri.com/

[9] Biere A. The AIGER And-Inverter
Graph (AIG) format, version 20071012.
Available at: http://fmv.jku.at/aiger/

[10] Kuehlmann A, Paruthi V, Krohm F,
Ganai MK. Robust Boolean reasoning

for equivalence checking and functional
property verification. IEEE Trans. on
CAD of Integrated Circuits and Systems.
2002;21(12):1377–1394. Available at:
doi: 10.1109/TCAD.2002.804386

[11] Smith EW, Dill DL. Automatic
formal verification of block cipher
implementations. In: Proceedings of the
2008 International Conference on Formal
Methods in Computer-Aided Design
(FMCAD ’08); Nov 2008; Portland
(OR). p. 1–7 Available at: doi: 10.1109/
FMCAD.2008.ECP.10

[12] Ferguson N, Lucks S, Schneier B,
Whiting D, Bellare M, Kohno T, Callas J,
Walker J. The Skein hash function family.
2009. Available at: http: //www.skein-
hash.info

[13] NIST’s Cryptographic hash
algorithm competition. 2008. Available
at: http://csrc.nist.gov/groups/ST/hash/
sha-3

[14] Finne S. A Cryptol implementation
of Skein. Galois, Inc.; 23 Jan 2009.
Available at: http://corp.galois.com/blog/
month/january-2009

[15] Long M. Implementing Skein
hash function on Xilinx Virtex-5 FPGA
platform. 02 Feb 2009. Available at:
http://www.skein-hash.info/downloads

[16] GHDL simulator version 0.26.
Available at: http://ghdl.free.fr/

[17] Symphony EDA. VHDL Simili
simulator version 3.1. Available at: http://
www.symphonyeda.com/products.htm

[18] Tillich S. Hardware implementation
of the SHA-3 candidate Skein. Report
2009/159; Apr 2009. Cryptology ePrint
Archive. Available at: http://eprint.iacr.
org/2009/159

[19] Kouril M, Paul JL. The van
der Waerden number W(2, 6) is
1132. Experimental Mathematics.
2008:17(1):53–61. Available at: http://
www.expmath.org/expmath/contents.
html

[20] Herwig PR, Heule MJH, van
Lambalgen PM, van Maaren H. A new

method to construct lower bounds for van
der Waerden numbers. The Electronic
Journal of Combinatorics. 2007;14(1):R6.
Available at: http://www.combinatorics.
org/Volume_14/v14i1toc.html

Further reading
Hardin DS, Browning SA. HSE final
report, available from the authors.

Hardin DS, editor. Design and verification
of microprocessor systems for high-
assurance applications. 1st ed. Springer;
15 Mar 2010. ISBN-10: 1441915382

Lewis JR, Hoffman C, Browning SA,
Martin WB. A complete design flow
for MILS in a single high-assurance
FPGA. In: Proceedings of the Second
Annual European Reconfigurable Radio
Technologies (ERRT) Workshop; Jun
2010. Mainz, Germany. Available at:
http://groups.winnforum.org/p/cm/ld/
fid=98

McLean M, Moore J. FPGA-based
single chip cryptographic solution.
Military Embedded Systems.
Mar 2007. Available at: http://
www.mil -embedded.com/ar t ic les /
id/?2069

9

