
  

Cryptographer as designer 
You are a highly skilled crypto-

grapher charged with designing a custom, 
state-of-the-art encryption solution for 
protecting mission-critical information. 
There are explicit and competing 
requirements for the implementation—
throughput, size, power utilization, 
operation temperature, etc.—that may 
affect the implementation. 

You produce a design and want 
to see how it matches up with the 
implementation requirements. How 
would you proceed? 

Typically, you find an expert 
hardware designer who translates your 
algorithm into VHDL (a hardware 
description language), and then runs 
proprietary tools to characterize the 
implementation. If it uses too much power, 

or has insufficient throughput, or..., the 
hardware designer iteratively tweaks the 
design until it is “good enough.” 

But how do you know if it still 
works the way you intended? 

Typically, the design is fabricated 
(if it is an ASIC—application-specific 
integrated circuit) or loaded into an FPGA 
(field-programmable gate array), placed 

into a test harness, and blasted with test 

vectors. If it works, great. Otherwise, the 

search begins to find the error. 

And what if a security hole; for 

example, a malicious counter or a back 

door; was introduced? Would you even 

know? 

There must be a better way. 

Empowering the Experts:
High-Assurance, High-Performance,
High-Level Design with Cryptol

Sally A. Browning, Magnus Carlsson, Levent Erkök, 
John Matthews, Brad Martin, Sean Weaver

A domain-specific language (DSL) is a programming language targeted 
at producing solutions in a given problem domain by enabling subject-
matter experts to design solutions in terms they are familiar with 

and at a level of abstraction that makes most sense to them. In addition, a 
good DSL opens the way for powerful tool support: simulations for design 
exploration; automatic testing and generation of test harnesses; generation 
of highly specialized code for multiple targets; and generation of formal 
evidence for correctness, safety, and security properties.

Figure 1: Traditionally, the 
crypto developer must be highly 
trained and expert at balancing 
a myriad of often conflicting 
requirements.

Image Source: Galois, Inc.
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Cryptol: A better way 
The Cryptol specification language 

was designed for the National Security 
Agency (NSA) as a public standard for 
specifying cryptographic algorithms [1]. 
The Cryptol tools provide a development 
path for cryptographic modules across the 
entire software process, from specification 
and implementation to verification and 
certification. Cryptol tools significantly 
reduce overall life-cycle costs by 
addressing the key cost drivers in the 
deployment of cryptography. 

Rapid design cycle

Cryptol specifications are 
fully executable, allowing designers 
to experiment with their programs 
incrementally as their designs evolve. 
The Cryptol tools support a refinement 
methodology that bridges the conceptual 
gap between specification and low-level 
implementation, thereby reducing time 
to market. For example, Cryptol allows 
engineers and mathematicians to program 
cryptographic algorithms on FPGAs as if 
they were writing software. 

Reusable specification

The Cryptol tools provide a 
platform-neutral specification language 
that generates implementations on multi
ple platforms. Cryptol tools can generate 
software implementations, hardware 
implementations, and formal models for 
verification, all from a single Cryptol 
program. 

Accelerated certification 

A Cryptol reference specification 
becomes the formal documentation for 
the cryptographic module, eliminating 
the need for separate and voluminous 
English descriptions. In addition, Cryptol 
verification tools show functional 
equivalence between the specification 
and the implementation at various stages 
of the toolchain. 

Design: The Cryptol 
language

Cryptol [1] is a pure functional 
language built on top of a polymorphic 
type system that has been extended with 
size polymorphism and arithmetic type 
predicates designed to capture constraints 
that arise naturally in cryptographic 
specifications. 

Figure 2 shows an excerpt from 
the AES specification [2] that describes 
the generator inputs and outputs, and the 
corresponding Cryptol definition. The 
text to the left of => ([128],[64*k]) in the 
Cryptol definition describes quantified 
type variables and predicates on them. In 
this case, the type is size polymorphic, 
relying on the size variable k. The 

predicates constrain the range of values 
the quantified size variables can accept; 
here, k must be between 2 and 4. To the 
right of the =>, we see the actual type. 
The function has two inputs: a 128-
bit word containing the plaintext and a 
64*k-bit wide key. The function outputs 
another 128-bit word, the ciphertext. Note 
the precise correspondence of the type to 
the English description in the standard. 

Figure 3 shows a Cryptol code 
snippet—a specification for the core of 
the DES algorithm. Note the compact 
mathematical function notation and the 
definition of sequence structures and bit 
sizes. The Cryptol Reference Manual [4] 
has many more examples as well as a 
detailed description of the language. 

Figure 2: The constraints and requirements from the Advanced Encryption Standard 
(AES) [2] can be translated directly into Cryptol types, as shown above. The colored 
text shows the linkage between English constraint and Cryptol type.

From Section 3.1 of the AES definition [2]:

The input and output for the AES algorithm each consist of sequences 
of 128 bits... The Cipher Key for the AES algorithm is a sequence of 
128, 192 or 256 bits. Other input, output and Cipher Key lengths are 
not permitted by this standard.

In Cryptol:
{k}{k>= 2, 4 >= k)
	 => ([128],[64*k]) -> [128]

Image Source: Galois, Inc.

des : ([64],[56]) -> [64];
initial 

permutation

plaintext

([ ] [ ]) [ ]
des (pt, key) = permute (FP, last)

where {
pt’ = permute (IP, pt);
iv = [| round (lr key rnd) f^

L0 R0

K1

iv  = [| round (lr, key, rnd)
|| rnd <- [0 .. 15]
|| lr <- [(split pt’)] # iv
|];

L1=R0 R1=L0^f(R0,K1)

K
2last = join (swap (iv @ 15));

swap [a b] = [b a];
}; L2=R1 R2=L1^f(R1,K2)

f^ 2

round : ([2][32], [56], [4]) -> [2][32];
round([l r], key, rnd) = [r (l^f(r, kx))]

where {
k d(k d)

L15=R14 R15=L14^f(R14,K15)

K16

kx = expand(key, rnd);
f(r,k) = permute(PP, SBox(k^permute(EP, r)));

}; R16=L15^f(R15,K16) L16=R15

f^

inverse initial
permutation

ciphertext

Image Source: Galois, Inc.

Figure 3: The Data Encryption Standard (DES) algorithm is a block cipher that 
uses a 56-bit symmetric key. The diagram above is taken from the Standard [3]. 
Cryptol uses parallel stream comprehensions to interleave data and lazy evaluation 
to encapsulate multiple computational stages in a single statement. Colors and 
shapes are used to help relate the program text to the diagram. Details of the 
language can be found in [4] and at www.cryptol.net.
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Implement: 
The Cryptol FPGA 

Type 1 cryptographic devices 
protect information of national 
importance. The information assurance 
standards for such products are 
correspondingly high. In addition, crypto 
modernization requirements mandate field 
programmability, and various operational 
requirements call for a reduced space, 
weight, and power footprint. 

FPGAs offer a compelling platform 
to address these needs. They are field 
updatable by design, offer tremendous 
performance potential, and have fewer 
nonrecurring engineering costs than 
traditional ASIC designs. 

However, FPGA development 
still requires the considerable time and 
talents of skilled hardware designers, 
which increases development time 
and costs. Mainstream design tools 
supplied by FPGA vendors have more 
in common with VLSI (very-large-
scale integration) design tools than with 
modern programming environments. 
These design tools automatically limit 
the user population to designers trained in 
VLSI design. 

The Cryptol FPGA generator 
introduces a new design flow that allows 
engineers and mathematicians to program 
cryptographic algorithms on FPGAs 
in a high-level language incorporating 
concepts and constructs familiar to 
cryptologists. The vision is that instead 
of demanding low-level hardware design 
knowledge, users are able to express their 
designs and programs at a much higher 
level of abstraction and take advantage 
of powerful automated mechanisms 
for generating, placing, and routing the 
circuits. 

In some ways, the mathematics 
behind a cryptographic specification is 
like a hardware description. Both give 
unambiguous specification of how bits 
are to be handled and how bit-level 

operations are to be applied. But there 
the resemblance ends. Sequences, which 
appear repeatedly in the mathematical 
descriptions of crypto algorithms, 
have many different instantiations as 
hardware. At one extreme, the sequence 
can be spread out in space as side-by-
side parallelism. At the other extreme, 
the sequence can be laid out in time as 
consecutive values held in a register, or 
over many registers in a pipeline. Many 
combinations of these are also possible. 

The Cryptol FPGA generator uses a 
wide variety of engineering heuristics to 
pick an appropriate translation of a Cryptol 
function to an FPGA configuration that 
will make effective and efficient use of 
the silicon. The user can also provide 
pragmas (compiler commands) about 
space/time mappings, thereby guiding the 
translation process without compromising 
the integrity of the original specification. 

The declarative quality of Cryptol, 
which makes Cryptol a good specification 
language, also plays a key role in the 
effectiveness of automatic generation 
of FPGA cores. In contrast, the inherent 
sequentiality of mainstream program
ming languages makes them a poor match 
for the highly parallel nature of FPGAs. 

Creating high-performance 
designs 

The Cryptol FPGA generator 
produces cores whose throughput and 
area usage have been comparable to 
(and in some cases better than) hand-
coded VHDL/Verilog. For example, an 
implementation of 128-bit AES for the 
Xilinx Virtex 4 FPGA has been generated 
with clock rates in excess of 200 MHz 
(which translates to throughput of better 
than 25 Gbps) using only 6912 slices (25 
percent of the slices on the chip) and 100 
Block RAMs (62 percent of the available 
Block RAMs). Theoretical results based 
on Xilinx tools indicate that 500 MHz (65 
Gbps) is achievable by these cores. 

High-level exploration of 
the design space 

Good design is always at the root of 
great performance. One of the key factors 
in Cryptol’s performance results is its 
ability to explore the implementation 
design space at a very high level. A 
Cryptol developer can experiment with 
many different microarchitectures in the 
course of a few days, covering ground 
that would otherwise take weeks or 
months using traditional methods. A 
variety of implementation approaches can 
be modeled and characterized quickly. 

For example, at the Cryptol level, 
a straightforward idiom identifies pipe-
lined functional units in hardware. Recall 
the specification for DES shown in Figure 
3. The designer has created a pipelined 
version of the round function by hand 
by factoring the high-level Cryptol 
specification, as shown in Figure 4. The 
Cryptol FPGA generator produces an 
efficient pipelined circuit, also shown in 
Figure 4 on page 8.

High-level design exploration pro-
vides a profound advantage in the devel-
opment of high-performance algorithms 
(or in algorithms meeting other design 
constraints). The key is the speed with 
which the developer is able to iterate the 
design, the bottleneck of hardware design. 
A crypto developer can produce rapid de-
sign iterations using the Cryptol Toolkit, 
effectively increasing productivity by up 
to an order of magnitude over traditional 
VHDL development. 

Trust: The Cryptol 
verification framework 

The FPGA generator uses semantic 
models to establish the correctness of 
the process. To gain final assurance, 
Cryptol developer Galois provides an 
automatic equivalence checker to prove 
that the actual code that will run on the 
FPGA is equivalent to the reference 
implementation. 
   3



The Cryptol equivalence checker 
utilizes state-of-the-art SAT (Boolean 
satisfiability) and SMT (satisfiability 
modulo theories) solvers as proof engines, 
together with custom heuristics and 
techniques. For example, the equivalence 
checker can show the equivalence of an 
AES specification written in Cryptol 
with an unrolled, pipelined VHDL 
implementation of AES generated from 
Cryptol and passed through the Xilinx 
toolchain all the way to place and route. 

Two classes of problems 

Cryptol’s verification framework 
has been designed to address equivalence- 
and safety-checking problems. 

The equivalence-checking problem 
asks whether two functions, f and g, agree 
on all inputs. Typically, f is a reference 
implementation of some algorithm, 
following a standard textbook-style 
description, and g is a version optimized 
for time and/or space for a particular 
target platform. The equivalence- 
checking framework allows a developer 
to formally prove that f and g are 
semantically equivalent, ensuring that 
the often very complicated and extensive 
optimizations performed during synthesis 
have not introduced bugs. Note that the 
final implementation g does not need to 
be in Cryptol—an important use case of 
the verification framework is to verify that 
third-party algorithm implementations 
(typically in VHDL) are functionally 
equivalent to their high-level Cryptol 
versions. In this case, Cryptol acts as a 
hardware/software verification tool [5]. 

The safety-checking problem is 
about run-time exceptions. Given a 
function f, we would like to know if f’s 
execution can perform operations such as 
division by zero or index out of bounds. 
These checks are essential for increasing 
the reliability of Cryptol-generated 
implementations, since they eliminate the 

round : [inf]([2][32],[56]) -> [inf]([2][32],[56]);
round data0 = data3

where {
data1 = [zero] # [| (expand key ^ permute(EP, r), [l r], key)

|| ([l r] key) <- data0|| ([l r], key) <- data0
|];

data2 = [zero] # [| (SBox(kx), [l r], key)  
|| (kx, [l r], key) <- data1
|];

data3 = [zero] # [| ([r (l ^ permute(PP, sb))], key)   
|| (sb, [l r], key) <- data2
|];|];

};

key key key key
data0 data1 data2 data3

y

r

l

y

kx

l

r

y

sb

l

r

expand SBox PP

XOR

XOR

y

lpx

r

EP

Figure 4: The code snippet above shows a new implementation of the DES 
round function, shown in Figure 3 on page 6. A flow diagram is included, with 
colors showing the correspondence between code and diagram element. This 
version uses sequence comprehensions that can be performed in parallel 
and introduces extra variables that translate into registers and pipelined 
operations in the VHDL implementation.

Figure 5: Verification can be performed at various points during the translation, 
which allows for high-assurance refinement during development. Note that 
the major compiler phases (the flow through the top line) remain outside the 
trusted-code base for verification. Trust in the down-arrows, representing 
translators from various intermediate forms to formal models, along with the 
off-the-shelf equivalence checkers themselves, is all that is needed.

Image Source: Galois, Inc.

Image Source: Galois, Inc.
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need for sophisticated run-time exception 
handling mechanisms. 

The Cryptol toolset comes with a 
push-button equivalence/safety checking 
framework to answer these questions 
automatically for a large subset of the 
Cryptol language [6]. Cryptol uses off-
the-shelf SAT/SMT solvers such as 
ABC [7] or Yices [8] as the underlying 
equivalence-checking engine, translating 
Cryptol specifications to appropri
ate inputs for these tools automatically. 
However, the use of these external tools 
remains transparent to the users, who 
only interact with Cryptol as the main 
verification tool. 

Of course, equivalence checking 
applies not only to handwritten programs 
but also to generated code. Cryptol’s 
synthesis tools perform extensive and 
often very complicated transformations 
to turn Cryptol programs into hardware 
primitives available on target FPGA 
platforms. The formal verification 
framework of Cryptol allows equivalence 
checking between Cryptol and netlist 
representations that are generated by 
various parts of the compiler, as we will 
explain shortly. Therefore, any potential 
bugs in the compiler itself are also caught 
by the same verification framework. This 
is a crucial aspect of the system: proving 
the Cryptol compiler correct would be an 
extremely challenging if not impossible 
task. Instead, Cryptol provides a verifying 
compiler that generates code along with a 
formal proof that the output is functionally 
equivalent to the input. 

Design and verification flow 
Figure 5 provides a high-level 

overview of a typical Cryptol development 
and verification flow. Starting with a 
Cryptol reference specification, the 
designer iteratively refines the program 
and “runs” it at the Cryptol command 
line. These refinements typically 
include various pipelining and structural 

transformations to increase speed and/or 
reduce space usage. Behind the scenes, 
the Cryptol toolchain translates Cryptol to 
a custom signal-processing intermediate 
representation (SPIR), which acts as a 
bridge between Cryptol and FPGA-based 
target platforms. The SPIR representation 
allows for easy experimentation with 
high-level design changes, because it 
remains fully executable while also 
providing essential timing/space usage 
statistics without going through the 
computationally expensive synthesis 
tasks.

Once the programmer is happy with 
the design, Cryptol translates the code to 
VHDL, which is further fed to third-party 
synthesis tools. Figure 5 shows the flow 
for the Xilinx toolchain, taking the VHDL 
through synthesis, place and route, and 
bit-file generation steps. In practice, 
these steps might need to be repeated, 
using feedback from the synthesis tools, 
until the implementation satisfies the 
requirements. The overall approach aims 
at greatly reducing the number of such 
repetitions by providing early feedback 
to the user, at the SPIR level. The final 
outcome is a binary file that can be 
downloaded onto a Xilinx FPGA board, 
completing the design process. 

Cryptol’s verification flow is 
interleaved with the design process. As 
depicted in Figure 5, Cryptol provides 
custom translators at various points in 
the translation process to generate formal 
models in terms of AIG (and‐inverter-
graph) representations [9]. In particular, 
the user can generate AIG representations 
from the reference (unoptimized) Cryptol 
specification, from the target (optimized) 
Cryptol specification, from the SPIR 
representation, from the post synthesis 
circuit description, and from the final 
(post-place-and-route) circuit description. 
By successive equivalence checking of 
the formal models generated at these 

check points, Cryptol provides the user 
with a high-assurance development 
environment, ensuring that the applied 
transformations preserve semantic 
equivalence. The final piece of the puzzle 
for end-to-end verification is generating 
an AIG for the bit file generated by the 
Xilinx tools, as represented by the dashed 
line in Figure 5. At this time, the format of 
this file remains proprietary. 

Verification for the cryptography 
domain: Why this works 

Cryptol’s formal verification 
framework clearly benefits from recent 
advances in SAT/SMT solving. However, 
it is also important to recognize that the 
properties of cryptographic algorithms 
make applications of automated formal 
methods particularly successful. This 
is especially true for symmetric key 
encryption algorithms that rely heavily 
on low-level bit manipulations instead 
of the high-level mathematical functions 
employed by public-key cryptography. 

In particular, symmetric-key 
cryptographic algorithms almost never 
perform control flow based on input data, 
in order to avoid attacks based on timing. 
The series of operations performed are 
typically “fixed,” without any dependence 
on the actual input values. Similarly, the 
loops used in these algorithms almost 
always have fixed bounds; typically these 
bounds arise from the number of rounds 
specified by the underlying algorithm. 
Techniques like SAT-sweeping [10] are 
especially effective on crypto‐algorithm 
verification, since simulation-based 
node-equivalence guesses are likely to 
be quite accurate for algorithms that 
rely heavily on shuffling input bits. 
Obviously, these properties do not make 
formal verification trivial for this class of 
crypto algorithms; rather, they make the 
use of such techniques highly feasible in 
practice [11].
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Verify: Evaluating 
third-party VHDL 
implementations 

The process of verification in 
Cryptol typically begins with 
understanding the high-level interface of 
the VHDL implementation under study. 
Through Cryptol’s foreign-function 
interface, the base interface to the VHDL is 
simply imported using Cryptol’s “extern” 
declaration capability. Then the required 
interface-matching code is written in 
Cryptol, mainly implementing the proper 
use of control signals. This process makes 
the external implementation available at 
the Cryptol command prompt, enabling 
the user to call it on specific values, pass it 
through previously generated test vectors, 
essentially making the external definition 
behave just like any other Cryptol 
function. This facility greatly increases 
productivity, since it unifies software and 
hardware under one common interface. 
Once the reference specification and 
the Cryptol/VHDL hybrid expose the 
same interface, the user generates formal 
models for both of them, and checks for 
equivalence. 

Challenges ahead
Increasing the coverage of formal 

methods. Cryptol’s formal verification 
framework works on a relatively large 
subset of Cryptol [6]. The main limitation 
is in verifying algorithms for all time, i.e., 
programs that receive and produce infinite 
streams of data. Currently, Cryptol 
can verify such algorithms only up to a 
fixed number of clock cycles, effectively 
introducing a time bound. While this 
restriction is irrelevant for most block-
based crypto algorithms, it does not 
generalize to stream ciphers in general. 
The introduction of induction capabilities 
in the equivalence checker or the use of 
hybrid methods combining manual top-
level proofs with fully automated SAT/
SMT-based sub proofs might provide 
a feasible alternative for handling such 
problems.

 Proving security properties. Not 

all properties of interest can be cast as 

functional equivalence problems. This 

is especially true for cryptography. For 

instance, if we are handed an alleged 

VHDL implementation of AES, in 

addition to knowing that it implements 

AES correctly, we would like to be 

sure that it does not contain any “extra 

circuitry” to leak the key. In general, 

we would like to show that an end user 

cannot gain any information from an 

implementation that cannot be obtained 

from a reference specification. 

Reducing the size of the trusted 
code base. Cryptol’s formal verification 

system relies on the correctness of the 

Cryptol compiler’s front-end components 

(i.e., the parser, the type system, etc.), the 

symbolic simulator, and the translators 

to SAT/SMT solvers. Note that Cryptol’s 

internal compiler passes, optimizations, 

and code generators (i.e., the typical 

compiler back-end components) are not 

in the trusted code base. While Cryptol’s 

trusted code base is only a fraction of the 

entire Cryptol tool suite, it is nevertheless 

a large chunk of code from the open-

source functional programming language, 

Haskell. Reducing the footprint of this 

trusted code base, and/or increasing 

assurance in these components of the 

system, is an ongoing challenge. 
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Q: What can YOU do with Cryptol?
A: Gain assurance about your design.

Van der Waerden’s theorem states that for any 
positive integers r and k there exists a positive 
integer N such that if the integers {1 2 ...N } 
are colored, each with one of r different colors, 
then there are at least k integers in arithmetic 
progression all of the same color. For any r and 
k, the smallest such N is the van der Waerden 
number W(r,k). 

Van de Waerden numbers are difficult to 
compute. In 2007, Dr. Michal Kouril of the 
University of Cincinnati established that 
W(2,6)=1132 (i.e., 1132 is the smallest 
integer N such that every 2-coloring of {1 2 
...N} contains a monochromatic arithmetic 
progression of length 6) [19]. The most recent 
previous result, W(2,5)=178, was discovered 
some 30 years earlier. Kouril computed W(2,6) 
using a special SAT-solver and clever techniques 
to bound the search and employed FPGAs to 
speed up the search. 

Kouril wrote VHDL to program the FPGAs. 
In order to convince himself that the FPGA 
ensemble was doing what he expected, he also 
expressed his algorithm in Cryptol, generated 
formal models for both the Cryptol specification 
and the VHDL implementation, and verified that 
the two were equivalent! 

Why not let Cryptol generate the solution? 
So far no one has found a way to prove 
unsatisfiability of W(r,k) directly without an 
extensive search. The reliance on search makes 
the problem hard; and although people have 
found ways to generate long partitions without 
a monochromatic arithmetic progression [20], 
the true test that there are no longer partitions 
is currently only possible using a search.

Q: What can YOU do with Cryptol?

A: Create a crypto algorithm and 
	 generate test vectors.

“...an experienced Cryptol programmer given 
a new crypto program specification and a soft 
copy of test vectors can be expected to learn 
the algorithm and have a fully functional and 
verified Cryptol model in a few days to a week.”

“The AIM crypto engine software engineers 
at General Dynamics C4 Systems use the 
Cryptol modeling language as part of their 
Software Engineering Institute CMM® Level 
5 development process. Cryptol provides four 
basic benefits leading to the certification of 
crypto equipment. First, Cryptol allows the 
design engineer to rapidly express an algorithm 
in a common mathematical notation, which 
is fully executable on the Cryptol interpreter, 
providing verification that the algorithm is 
completely understood. Second, the Cryptol 
notation for the various components of the 
algorithm are used to annotate the AIM micro 
sequencer code which provides much greater 
readability of that extremely dense assembly 
language. Third, component testing of AIM 
code, from small snippets through major 
subroutines is greatly facilitated with Cryptol 
generated test vectors derived from end-to-
end test vectors provided in algorithm source 
specifications. Finally, Cryptol models are 
evolving to directly support the certification 
effort...”

Alan Newman
General Dynamics 
C4 Systems

Cryptol
reference

specification

Cryptol
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Test
vectors

Q: What can YOU do with Cryptol?

A: Produce and refine a family 
of designs.

A team of developers from Rockwell Collins, 
Inc. and Galois, Inc. has successfully produced 
high-speed embedded Cryptographic Equipment 
Applications (CEAs), automatically generated 
from high-level specifications. An algorithm 
core generated from a Cryptol specification for 
AES-256 running in Electronic Codebook mode 
demonstrated throughput in excess of 16 
Gbps. These high-speed CEA implementations 
comprise a mixture of software and VHDL, 
and target a compact new embedded platform 
designed by Rockwell Collins. Notably, almost no 
traditional low-level interface code was required 
in order to implement these high-performance 
CEAs. In addition, automated formal methods 
prove that algorithm implementations faithfully 
implement their high-level specifications. 
Significantly, the Rockwell Collins/Galois team 
was able to design, implement, simulate, 
integrate, analyze, and test a complex CEA on 
the new hardware in less than 3 months.

AES-256, ECB mode, 
Virtex-4 technology

Implementation 
characteristics

Clockrate

(MHz)

Resources

(slices)

Throughput

(Gbps/
second)

Optimized for 
high throughput 127.5 2690 16.3

Optimized to minimize 
resource usage 135.1 849 1.2

Handwritten, 
minimal size 102.0 2535 0.9
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Q: What can YOU do with Cryptol?
A: Gain assurance about someone 
	 else’s design.

Skein [12] is a suite of cryptographic hash 
algorithms targeted at the NIST SHA-3 
competition [13]. At its core, Skein uses a 
tweakable block cipher named Threefish. The 
unique block iteration (UBI) chaining mode 
defines the mode of operation by the repeated 
application of the block cipher function. 

Galois developed and published a Cryptol 
specification for Skein [14]. We have verified two 
independently developed VHDL implementations 
of Skein against our specification for one 256-
bit input block, generating a 256-bit hash value.

The first verification was performed against 
Men Long’s implementation [15]. Long 
implemented only the underlying Threefish 
encryption and the XOR of input data; we 
modified our reference specification to 
match. The AIG generated from the Cryptol 
specification had 118,156 AND-gates; the 
VHDL version was more than five times as 
large, with 653,963 AND-gates. Equivalence 
checking took about an hour to complete on 
commodity hardware using ABC [7]. 

In this work, we encountered a problem 
with Long’s VHDL code that rotated a 64-bit 
signal a variable distance. The code was given 
different meanings by GHDL [16], simili [17], 
and the Xilinx synthesis tools. We removed 
the ambiguity by replacing it with the standard 
library function rotate_left. Thus, the Cryptol 
verification path identified an otherwise 
undetected ambiguity bug. 

The second verification was performed against 
Stefan Tillich’s full Skein implementation [18]. 
The AIG sizes in this case were 301,085 AND-
gates for the reference Cryptol versus 900,239 
AND-gates for the VHDL implementation: about 
three times larger. Equivalence checking was 
completed in about 18 hours, again using ABC.

Q: What can YOU do with Cryptol?
A: Teach and learn about cryptography, satisfiability theory,....

“Cryptol was quite an experience. We began with simple sequences such as [1 2 3 4] and by 
applying ‘@’ and ‘!’ to our list of numbers, we learned the priority/position of each number: when 
using @, the order is zero based, [0th 1st 2nd 3rd], and when using !, the order is reversed, [3rd 
2nd 1st 0th]. Each number or element contains a certain numbers of bits: 1 (0b1) contains one 
bit, 2 (0b10) is two bits, 3 (0b11) is also two bits and 4 (0b100) is three bits. 

Once the group grasped the concept of bits, we moved on to shifting and permuting sequences 
using split, join, splitBy, groupBy, take, drop, reverse, and transpose. We then applied these fun-
damentals we had learned about Cryptol to interact with its interpreter and to explore some of the 
concepts we had learned earlier in the year, such as Pascal’s Triangle, the Fibonacci sequence, the 
sum of a series of odds, even, etc. Once that was complete, and given that Cryptol’s intended use 
is cryptography, we used Cryptol to encrypt plaintext and decrypt ciphertext for a range of classes 
of cryptographic algorithms, to include classic (substitution and transposition) and modern (sym-
metric and asymmetric) cryptographic systems. 

We concluded our study of Cryptol by looking into 
propositional logic and satisfiability, and ultimately 
at a satisfiability solver that could be called from 
within the Cryptol interpreter. In our examination 
of propositional logic, we were initially forced 
to prove our satisfying assumptions by hand 
through the construction of small truth tables 
with assignments of values with the goal of having 
the formula evaluate to ‘true’, that is, they were 
satisfied. To extend these concepts we utilized 
the automated satisfiability solver that we could 
call from the Cryptol interpreter. One application 
where we were able to represent a problem 
within Cryptol and to utilize the satisfiability solver 
was in solving Sudoku puzzles. It was an amazing 
experience and I will continue to play around with 
Cryptol and the satisfiability solver because it was 
so very intriguing.”

Excerpt from a report by Avery Tose, a senior 
attending Lighthouse Christian Academy in 
Stevensville, Maryland, who participated in 
“Exploring Science through Patterns in Nature,” 
an enrichment activity led by Brad Martin, NSA, 
May, 2009.

Q: What can YOU do with Cryptol?
A: Make a MILS FPGA.

The Cryptol Development Toolkit from 
Galois provides a tool flow that puts FPGA 
implementation into the hands of mainline 
developers, improving both productivity and 
assurance, without sacrificing performance. 

The Xilinx Single Chip Cryptographic (SCC) 
technology enables Multiple Independent 
Levels of Security (MILS) in a single chip. 
These two technologies fit seamlessly into a 
single development flow. 

The combined solution can address 
high-grade cryptographic application 
requirements (redundancy, performance, 
red/black data, and multiple levels of 
security on a single chip) as well as high 
assurance development needs (high-
level designs, automatic generation of 
implementation from design, automatically-
generated equivalence evidence), and has 
the potential to significantly reduce the time 
of costs of developing Type-1 cryptographic 
applications.
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